Environ Sci Pollut Res Int
February 2015
During snowmelt, the infiltration of large amounts of propylene glycol (PG), the major compound of many aircraft deicing fluids, affects redox processes and poses a contamination risk for the groundwater. To gain a better understanding about the degradation of PG and the associated biogeochemical processes under these conditions, we conducted saturated soil column experiments at 4 °C. During two successive PG pulses, we monitored the effect of the runway deicer formate (FO) and changing redox conditions on PG degradation.
View Article and Find Full Text PDFNon-invasive spatially resolved monitoring techniques may hold the key to observe heterogeneous flow and transport behavior of contaminants in soils. In this study, time-lapse electrical resistivity tomography (ERT) was employed during an infiltration experiment with deicing chemical in a small field lysimeter. Deicing chemicals like potassium formate, which frequently impact soils on airport sites, were infiltrated during snow melt.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2015
During winter operations at airports, large amounts of organic deicing chemicals (DIC) accumulate beside the runways and infiltrate into the soil during spring. To study the transport and degradation of DIC in the unsaturated zone, eight undisturbed soil cores were retrieved at Oslo airport, Norway, and installed as lysimeters at a nearby field site. Before snowmelt in 2010 and 2011, snow amended with a mix of the DICs propylene glycol (PG) and formate as well as bromide as conservative tracer was applied.
View Article and Find Full Text PDFTransport and degradation of de-icing chemical (containing propylene glycol, PG) in the vadose zone were studied with a lysimeter experiment and a model, in which transient water flow, kinetic degradation of PG and soil chemistry were combined. The lysimeter experiment indicated that aerobic as well as anaerobic degradation occurs in the vadose zone. Therefore, the model included both types of degradation, which was made possible by assuming advection-controlled (mobile) and diffusion-controlled (immobile) zones.
View Article and Find Full Text PDFSurg Gynecol Obstet
November 1958