Orthodontic maxillary expansion relies on intrinsic mid-palatal suture mechanobiology to induce guided osteogenesis, yet establishment of the mid-palatal suture within the continuous secondary palate and causes of maxillary insufficiency remain poorly understood. In contrast, advances in cranial suture research hold promise to improve surgical repair of prematurely fused cranial sutures in craniosynostosis to potentially restore the obliterated signaling environment and ensure continual success of the intervention. We hypothesized that mid-palatal suture establishment is governed by shared principles with calvarial sutures and involves functional linkage between expanding primary ossification centres with the midline mesenchyme.
View Article and Find Full Text PDFBone histomorphometry is a well-established approach to assessing skeletal pathology, providing a standard evaluation of the cellular components, architecture, mineralization, and growth of bone tissue. However, it depends in part on the subjective interpretation of cellular morphology by an expert, which introduces bias. In addition, diseases like osteogenesis imperfecta (OI) and fibrous dysplasia are accompanied by changes in the morphology and function of skeletal tissue and cells, hindering consistent evaluation of some morphometric parameters and interpretation of the results.
View Article and Find Full Text PDFTo assess point-of-care ultrasound (POCUS) in 2024, we should start by defining its expanded scope and integration into general and specialty practice. Clinicians should abide by the evolving evidence for POCUS utilization and patient outcomes different from mortality and morbidity, especially as there are notable advancements in handheld ultrasound technology with a clear shift from capability to portability. To reduce diagnostic errors, POCUS practitioners need a holistic framework that accounts for known and new applications.
View Article and Find Full Text PDFRelevance of mineralized nodules in two-dimensional (2D) osteoblast/osteocyte cultures to bone biology, pathology, and engineering is a decades old question, but a comprehensive answer appears to be still wanting. Bone-like cells, extracellular matrix (ECM), and mineral were all reported but so were non-bone-like ones. Many studies described seemingly bone-like cell-ECM structures based on similarity to few select bone features in vivo, yet no studies examined multiple bone features simultaneously and none systematically studied all types of structures coexisting in the same culture.
View Article and Find Full Text PDFCellular response to protein misfolding underlies multiple diseases. Collagens are the most abundant vertebrate proteins, yet little is known about cellular response to misfolding of their procollagen precursors. Osteoblasts (OBs)-the cells that make bone-produce so much procollagen that it accounts for up to 40% of mRNAs in the cell, which is why bone bears the brunt of mutations causing procollagen misfolding in osteogenesis imperfecta (OI).
View Article and Find Full Text PDFShort stature is a major skeletal phenotype in osteogenesis imperfecta (OI), a genetic disorder mainly caused by mutations in genes encoding type I collagen. However, the underlying mechanism is poorly understood, and no effective treatment is available. In OI mice that carry a G610C mutation in COL1A2, we previously found that mature hypertrophic chondrocytes (HCs) are exposed to cell stress due to accumulation of misfolded mutant type I procollagen in the endoplasmic reticulum (ER).
View Article and Find Full Text PDFSecretion and quality control of large extracellular matrix proteins remain poorly understood and debated, particularly transport intermediates delivering folded proteins from the ER to Golgi and misfolded ones to lysosomes. Discrepancies between different studies are related to utilization of exogenous cargo, off-target effects of experimental conditions and cell manipulation, and identification of transport intermediates without tracing their origin and destination. To address these issues, here we imaged secretory and degradative trafficking of type I procollagen in live MC3T3 osteoblasts by replacing a region encoding N-propeptide in endogenous Col1a2 gDNA with GFP cDNA.
View Article and Find Full Text PDFBackground: Pneumorrhachis is the presence of air within the spinal canal and is most often traumatic or iatrogenic in etiology. Rarely, a small amount of pneumorrhachis can be seen with spontaneous pneumomediastinum. Here we describe a case of asymptomatic longitudinally extensive pneumorrhachis associated with spontaneous pneumomediastinum.
View Article and Find Full Text PDFEfficient quality control and export of procollagen from the cell is crucial for extracellular matrix homeostasis, yet it is still incompletely understood. One of the debated questions is the role of a collagen-specific ER chaperone HSP47 in these processes. Most ER chaperones preferentially bind to unfolded polypeptide chains, enabling selective export of natively folded proteins from the ER after chaperone release.
View Article and Find Full Text PDFNull mutations in CRTAP or P3H1, encoding cartilage-associated protein and prolyl 3-hydroxylase 1, cause the severe bone dysplasias, types VII and VIII osteogenesis imperfecta. Lack of either protein prevents formation of the ER prolyl 3-hydroxylation complex, which catalyzes 3Hyp modification of types I and II collagen and also acts as a collagen chaperone. To clarify the role of the A1 3Hyp substrate site in recessive bone dysplasia, we generated knock-in mice with an α1(I)P986A substitution that cannot be 3-hydroxylated.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
September 2019
Mutations in the type I procollagen C-propeptide occur in ~6.5% of Osteogenesis Imperfecta (OI) patients. They are of special interest because this region of procollagen is involved in α chain selection and folding, but is processed prior to fibril assembly and is absent in mature collagen fibrils in tissue.
View Article and Find Full Text PDFObjective: Uterine fibroids (leiomyomas) are common benign tumors of the myometrium but their molecular pathobiology remains elusive. These stiff and often large tumors contain abundant extracellular matrix (ECM), including large amounts of collagen, and can lead to significant morbidities. After observing structural multiformities of uterine fibroids, we aimed to explore this heterogeneity by focusing on collagen and tissue stiffness.
View Article and Find Full Text PDFOsteogenesis imperfecta (OI) is a hereditary bone disorder most commonly caused by autosomal dominant mutations in genes encoding type I collagen. In addition to bone fragility, patients suffer from impaired longitudinal bone growth. It has been demonstrated that in OI, an accumulation of mutated type I collagen in the endoplasmic reticulum (ER) induces ER stress in osteoblasts, causing osteoblast dysfunction leading to bone fragility.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2018
Type I collagen is the main component of bone matrix and other connective tissues. Rerouting of its procollagen precursor to a degradative pathway is crucial for osteoblast survival in pathologies involving excessive intracellular buildup of procollagen that is improperly folded and/or trafficked. What cellular mechanisms underlie this rerouting remains unclear.
View Article and Find Full Text PDFOI is a clinically and genetically heterogeneous disorder characterized by bone fragility. More than 90% of patients are heterozygous for mutations in type I collagen genes, COL1A1 and COL1A2, and a common mutation is substitution for an obligatory glycine in the triple helical Gly-X-Y repeats. Few non-glycine substitutions in the triple helical domain have been reported; most result in Y-position substitutions of arginine by cysteine.
View Article and Find Full Text PDFClassical osteogenesis imperfecta (OI) is a bone disease caused by type I collagen mutations and characterized by bone fragility, frequent fractures in absence of trauma and growth deficiency. No definitive cure is available for OI and to develop novel drug therapies, taking advantage of a repositioning strategy, the small teleost zebrafish (Danio rerio) is a particularly appealing model. Its small size, high proliferative rate, embryo transparency and small amount of drug required make zebrafish the model of choice for drug screening studies, when a valid disease model is available.
View Article and Find Full Text PDFCollagen prolyl 4-hydroxylases (C-P4Hs) play a central role in the formation and stabilization of the triple helical domain of collagens. P4HA1 encodes the catalytic α(I) subunit of the main C-P4H isoenzyme (C-P4H-I). We now report human bi-allelic P4HA1 mutations in a family with a congenital-onset disorder of connective tissue, manifesting as early-onset joint hypermobility, joint contractures, muscle weakness and bone dysplasia as well as high myopia, with evidence of clinical improvement of motor function over time in the surviving patient.
View Article and Find Full Text PDFWe present an acute apixaban overdose without reported coingestants; it is the first such case report associated with multiple serum drug levels to assist in determining overdose kinetics. A 62 year old female presented to an emergency department (ED) 2 hours after ingesting sixty 5 mg tablets (5mg/kg) of her spouse's apixaban medication. She denied coingestants, and did not take her prescribed medications that day.
View Article and Find Full Text PDFRecessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores.
View Article and Find Full Text PDFOsteogenesis imperfecta (OI) is a collagen-related bone dysplasia. We identified an X-linked recessive form of OI caused by defects in MBTPS2, which encodes site-2 metalloprotease (S2P). MBTPS2 missense mutations in two independent kindreds with moderate/severe OI cause substitutions at highly conserved S2P residues.
View Article and Find Full Text PDFGlycine substitutions in type I collagen appear to cause osteogenesis imperfecta (OI) by disrupting folding of the triple helix, the structure of which requires Gly in every third position. It is less clear, however, whether the resulting bone malformations and fragility are caused by effects of intracellular accumulation of misfolded collagen on differentiation and function of osteoblasts, effects of secreted misfolded collagen on the function of bone matrix, or both. Here we describe a study originally conceived for testing how reducing intracellular accumulation of misfolded collagen would affect mice with a Gly610 to Cys substitution in the triple helical region of the α2(I) chain.
View Article and Find Full Text PDF