Phys Rev E Stat Nonlin Soft Matter Phys
April 2005
We present observations for 20-MA wire-array z pinches of an extended wire ablation period of 57%+/-3% of the stagnation time of the array and non-thin-shell implosion trajectories. These experiments were performed with 20-mm-diam wire arrays used for the double- z -pinch inertial confinement fusion experiments [M. E.
View Article and Find Full Text PDFA new analytical model, derived rigorously from scalar diffraction theory, accurately fits soft-x-ray measurements of symmetrical profile gold transmission gratings in all diffracted orders. The calibration system selects numerous photon energies by use of a high-resolution grazing-incidence monochromator and a dc e-beam source. Fine-period free-standing gratings exhibit limited performance and require such testing to determine parameters of and select acceptable gratings for use in time-resolved (0.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2004
We have measured the x-ray power and energy radiated by a tungsten-wire-array z pinch as a function of the peak pinch current and the width of the anode-cathode gap at the base of the pinch. The measurements were performed at 13- and 19-MA currents and 1-, 2-, 3-, and 4-mm gaps. The wire material, number of wires, wire-array diameter, wire-array length, wire-array-electrode design, normalized-pinch-current time history, implosion time, and diagnostic package were held constant for the experiments.
View Article and Find Full Text PDFSimulations of a double Z-pinch hohlraum, relevant to the high-yield inertial-confinement-fusion concept, predict that through geometry design the time-integrated P2 Legendre mode drive asymmetry can be systematically controlled from positive to negative coefficient values. Studying capsule elongation, recent experiments on Z confirm such control by varying the secondary hohlraum length. Since the experimental trend and optimum length are correctly modeled, confidence is gained in the simulation tools; the same tools predict capsule drive uniformity sufficient for high-yield fusion ignition.
View Article and Find Full Text PDFAn inertial-confinement-fusion (ICF) concept using two 60-MA Z pinches to drive a cylindrical hohlraum to 220 eV has been recently proposed. The first capsule implosions relevant to this concept have been performed at the same physical scale with a lower 20-MA current, yielding a 70+/-5 eV capsule drive. The capsule shell shape implies a polar radiation symmetry, the first high-accuracy measurement of this type in a pulsed-power-driven ICF configuration, within a factor of 1.
View Article and Find Full Text PDFA double Z pinch driving a cylindrical secondary hohlraum from each end has been developed which can indirectly drive intertial confinement fusion capsule implosions with time-averaged radiation fields uniform to 2%-4%. 2D time-dependent view factor and 2D radiation hydrodynamic simulations using the measured primary hohlraum temperatures show that capsule convergence ratios of at least 10 with average distortions from sphericity of
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics
September 1994