Publications by authors named "LE Ruggles"

We present observations for 20-MA wire-array z pinches of an extended wire ablation period of 57%+/-3% of the stagnation time of the array and non-thin-shell implosion trajectories. These experiments were performed with 20-mm-diam wire arrays used for the double- z -pinch inertial confinement fusion experiments [M. E.

View Article and Find Full Text PDF

A new analytical model, derived rigorously from scalar diffraction theory, accurately fits soft-x-ray measurements of symmetrical profile gold transmission gratings in all diffracted orders. The calibration system selects numerous photon energies by use of a high-resolution grazing-incidence monochromator and a dc e-beam source. Fine-period free-standing gratings exhibit limited performance and require such testing to determine parameters of and select acceptable gratings for use in time-resolved (0.

View Article and Find Full Text PDF

We have measured the x-ray power and energy radiated by a tungsten-wire-array z pinch as a function of the peak pinch current and the width of the anode-cathode gap at the base of the pinch. The measurements were performed at 13- and 19-MA currents and 1-, 2-, 3-, and 4-mm gaps. The wire material, number of wires, wire-array diameter, wire-array length, wire-array-electrode design, normalized-pinch-current time history, implosion time, and diagnostic package were held constant for the experiments.

View Article and Find Full Text PDF

Simulations of a double Z-pinch hohlraum, relevant to the high-yield inertial-confinement-fusion concept, predict that through geometry design the time-integrated P2 Legendre mode drive asymmetry can be systematically controlled from positive to negative coefficient values. Studying capsule elongation, recent experiments on Z confirm such control by varying the secondary hohlraum length. Since the experimental trend and optimum length are correctly modeled, confidence is gained in the simulation tools; the same tools predict capsule drive uniformity sufficient for high-yield fusion ignition.

View Article and Find Full Text PDF

An inertial-confinement-fusion (ICF) concept using two 60-MA Z pinches to drive a cylindrical hohlraum to 220 eV has been recently proposed. The first capsule implosions relevant to this concept have been performed at the same physical scale with a lower 20-MA current, yielding a 70+/-5 eV capsule drive. The capsule shell shape implies a polar radiation symmetry, the first high-accuracy measurement of this type in a pulsed-power-driven ICF configuration, within a factor of 1.

View Article and Find Full Text PDF

A double Z pinch driving a cylindrical secondary hohlraum from each end has been developed which can indirectly drive intertial confinement fusion capsule implosions with time-averaged radiation fields uniform to 2%-4%. 2D time-dependent view factor and 2D radiation hydrodynamic simulations using the measured primary hohlraum temperatures show that capsule convergence ratios of at least 10 with average distortions from sphericity of /r200 MJ.

View Article and Find Full Text PDF