Publications by authors named "L van Wittenberghe"

Article Synopsis
  • Glycogen storage disease type III (GSDIII) is a rare condition caused by a deficiency in the glycogen debranching enzyme, leading to liver issues and muscle weakness, with no current cure available.
  • Previous research indicated that using two dual AAV (adeno-associated virus) vectors to deliver the GDE gene could effectively target both liver and muscle in a GSDIII mouse model.
  • This study investigated the combination of rapamycin and AAV gene therapy, finding that the treatment improved outcomes by reducing immune response and enhancing the therapeutic effect, supporting further clinical applications.
View Article and Find Full Text PDF

Glycogen storage disease type III (GSDIII) is a rare inborn error of metabolism affecting liver, skeletal muscle, and heart due to mutations of the AGL gene encoding for the glycogen debranching enzyme (GDE). No curative treatment exists for GSDIII. The 4.

View Article and Find Full Text PDF

Pompe disease (PD) is a neuromuscular disorder caused by acid α-glucosidase (GAA) deficiency. Reduced GAA activity leads to pathological glycogen accumulation in cardiac and skeletal muscles responsible for severe heart impairment, respiratory defects, and muscle weakness. Enzyme replacement therapy with recombinant human GAA (rhGAA) is the standard-of-care treatment for PD, however, its efficacy is limited due to poor uptake in muscle and the development of an immune response.

View Article and Find Full Text PDF

Pompe disease (PD) is a severe neuromuscular disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). PD is currently treated with enzyme replacement therapy (ERT) with intravenous infusions of recombinant human GAA (rhGAA). Although the introduction of ERT represents a breakthrough in the management of PD, the approach suffers from several shortcomings.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) vectors are a well-established gene transfer approach for rare genetic diseases. Nonetheless, some tissues, such as bone, remain refractory to AAV. X-linked hypophosphatemia (XLH) is a rare skeletal disorder associated with increased levels of fibroblast growth factor 23 (FGF23), resulting in skeletal deformities and short stature.

View Article and Find Full Text PDF