Whole genome sequencing (WGS) is widely used for outbreak analysis of bacteriology and virology but is scarcely used in mycology. Here, we used WGS for genotyping isolates from a potential outbreak in an intensive care unit (ICU) during construction work. After detecting the outbreak, fungal cultures were performed on all surveillance and/or patient respiratory samples.
View Article and Find Full Text PDFDuring thyroid surgery fast and reliable intra-operative pathological feedback has the potential to avoid a two-stage procedure and significantly reduce health care costs in patients undergoing a diagnostic hemithyroidectomy (HT). We explored higher harmonic generation (HHG) microscopy, which combines second harmonic generation (SHG), third harmonic generation (THG), and multiphoton excited autofluorescence (MPEF) for this purpose. With a compact, portable HHG microscope, images of freshly excised healthy tissue, benign nodules (follicular adenoma) and malignant tissue (papillary carcinoma, follicular carcinoma and spindle cell carcinoma) were recorded.
View Article and Find Full Text PDFThe optimal cut-off value of the optical density index of the galactomannan antigen assays (GM) for diagnosing invasive pulmonary aspergillosis in hematological patients is a disputed topic. This article conducts a systematic review with a meta-analysis to establish which optical density index (ODI) cut-off value should be implemented into clinical practice. Pubmed, Embase and Cochrane databases were searched (N = 27).
View Article and Find Full Text PDFBackground: Critically ill COVID-19 patients have proven to be at risk for developing invasive fungal infections. However, the incidence and impact of possible/probable COVID-19-associated pulmonary aspergillosis (CAPA) in severe COVID-19 patients varies between cohorts. We aimed to assess the incidence, risk factors, and clinical outcome of invasive pulmonary aspergillosis in a regional cohort of COVID-19 intensive care patients.
View Article and Find Full Text PDFThe local delivery of growth factors such as BMP-2 is a well-established strategy for the repair of bone defects. The limitations of such approaches clinically are well documented and can be linked to the need for supraphysiological doses and poor spatio-temporal control of growth factor release . Using bioprinting techniques, it is possible to generate implants that can deliver cytokines or growth factors with distinct spatiotemporal release profiles and patterns to enhance bone regeneration.
View Article and Find Full Text PDF