The influential concept of the rare biosphere in microbial ecology has underscored the importance of taxa occurring at low abundances yet potentially playing key roles in communities and ecosystems. Here, we refocus the concept of rare biosphere through a functional trait-based lens and provide a framework to characterize microbial functional rarity, a combination of numerical scarcity across space or time and trait distinctiveness. We demonstrate how this novel interpretation of the rare biosphere, rooted in microbial functions, can enhance our mechanistic understanding of microbial community structure.
View Article and Find Full Text PDFClimate warming and landscape fragmentation are both factors well known to threaten biodiversity and to generate species responses and adaptation. However, the impact of warming and fragmentation interplay on organismal responses remains largely under-explored, especially when it comes to gut symbionts, which may play a key role in essential host functions and traits by extending its functional and genetic repertoire. Here, we experimentally examined the combined effects of climate warming and habitat connectivity on the gut bacterial communities of the common lizard () over three years.
View Article and Find Full Text PDFThe study of microbiomes across organisms and environments has become a prominent focus in molecular ecology. This perspective article explores common challenges, methodological advancements, and future directions in the field. Key research areas include understanding the drivers of microbiome community assembly, linking microbiome composition to host genetics, exploring microbial functions, transience and spatial partitioning, and disentangling non-bacterial components of the microbiome.
View Article and Find Full Text PDFMetazoan metabarcoding is emerging as an essential strategy for inventorying biodiversity, with diverse projects currently generating massive quantities of community-level data. The potential for integrating across such data sets offers new opportunities to better understand biodiversity and how it might respond to global change. However, large-scale syntheses may be compromised if metabarcoding workflows differ from each other.
View Article and Find Full Text PDF