Publications by authors named "L Zeugner"

Gene clusters rich in carbohydrate-active enzymes within Flavobacteriia genera provide a competitiveness for their hosts to degrade diatom-derived polysaccharides. One such widely distributed polysaccharide is glucuronomannan, a main cell wall component of diatoms. A conserved gene cluster putatively degrading glucuronomannan was found previously among various flavobacterial taxa in marine metagenomes.

View Article and Find Full Text PDF

Polysaccharides are major components of macroalgal and phytoplankton biomass and constitute a large fraction of the organic matter produced and degraded in the ocean. Until recently, however, our knowledge of marine polysaccharides was limited due to their great structural complexity, the correspondingly complicated enzymatic machinery used by microbial communities to degrade them, and a lack of readily applied means to isolate andcharacterize polysaccharides in detail. Advances in carbohydrate chemistry, bioinformatics, molecular ecology, and microbiology have led to new insights into the structures of polysaccharides, the means by which they are degraded by bacteria, and the ecology of polysaccharide production and decomposition.

View Article and Find Full Text PDF

Although fluorescence in situ hybridization (FISH) with specific ribosomal RNA (rRNA)-targeted oligonucleotides is a standard method to detect and identify microorganisms, the specific detection of genes in bacteria and archaea, for example by using geneFISH, requires complicated and lengthy (> 30 h) procedures. Here we report a much improved protocol, direct-geneFISH, which allows specific gene and rRNA detection within less than 6 h. For direct-geneFISH, catalyzed amplification reporter deposition (CARD) steps are removed and fluorochrome-labelled polynucleotide gene probes and rRNA-targeted oligonucleotide probes are hybridized simultaneously.

View Article and Find Full Text PDF

Aim: This study was performed to investigate the possibility to photodynamically inactivate Gram-negative bacteria without intracellular uptake of the photosensitizer. The efficiency of the photodynamic growth inhibition of Escherichia coli (SURE2) was proved in a comparative study of a neutral and a cationic photosensitizer.

Methods And Results: We used confocal laser scanning microscopy (CLSM) to investigate the uptake of the photosensitizer by the bacteria to show that both chlorin e(6) and TMPyP are not accumulated in the cells.

View Article and Find Full Text PDF