Publications by authors named "L Zetta"

Fibroblast growth factors (FGFs) are recognized targets for the development of therapies against angiogenesis-driven diseases, including cancer. The formation of a ternary complex with the transmembrane tyrosine kinase receptors (FGFRs), and heparan sulphate proteoglycans (HSPGs) is required for FGF2 pro-angiogenic activity. Here by using a combination of techniques including Nuclear Magnetic Resonance, Molecular Dynamics, Surface Plasmon Resonance and cell-based binding assays we clarify the molecular mechanism of inhibition of an angiostatic small molecule, sm27, mimicking the endogenous inhibitor of angiogenesis, thrombospondin-1.

View Article and Find Full Text PDF

Heat shock protein 90 (Hsp90) is a prime target for antitumor therapies. The information obtained by molecular dynamics (MD) simulations is combined with NMR data to provide a cross-validated atomic resolution model of the complementary interactions of heat shock protein 90 with a peptidic (shepherdin) and a non-peptidic (5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside, AICAR) inhibitor, showing antiproliferative and proapoptotic activity in multiple tumor cell lines. This approach highlights the relevant role of imidazolic moiety in the interaction of both antagonist molecules.

View Article and Find Full Text PDF

A nuclear magnetic resonance (NMR) method was implemented to assess in vivo oxygenation levels by a quantitative determination of the 1H NMR myoglobin (Mb) resonances. The proximal His-F8 NdeltaH at 70-90 ppm and Val-E11 gammaCH3 resonance at -2.8 ppm, reflecting deoxygenated (deoxy-Mb) and oxygenated (met-Mb) states, were alternately recorded.

View Article and Find Full Text PDF

Endogenous inhibitors of angiogenesis, such as thrombospondin-1 (TSP-1), are promising sources of therapeutic agents to treat angiogenesis-driven diseases, including cancer. TSP-1 regulates angiogenesis through different mechanisms, including binding and sequestration of the angiogenic factor fibroblast growth factor-2 (FGF-2), through a site located in the calcium binding type III repeats. We hypothesized that the FGF-2 binding sequence of TSP-1 might serve as a template for the development of inhibitors of angiogenesis.

View Article and Find Full Text PDF

Angiogenesis and inflammation are closely integrated processes. Fibroblast growth factor-2 (FGF2) is a prototypic angiogenesis inducer belonging to the family of the heparin-binding FGF growth factors. FGF2 exerts its pro-angiogenic activity by interacting with various endothelial cell surface receptors, including tyrosine kinase receptors, heparan-sulfate proteoglycans, and integrins.

View Article and Find Full Text PDF