Publications by authors named "L Younes"

Advancements in imaging and molecular techniques enable the collection of subcellular-scale data. Diversity in measured features, resolution, and physical scope of capture across technologies and experimental protocols pose numerous challenges to integrating data with reference coordinate systems and across scales. This resource paper describes a collection of technologies that we have developed for cross-modality 3D mapping for the alignment of transcriptomics at the micron scales of genes and cells to the anatomical tissue scales.

View Article and Find Full Text PDF

Life satisfaction refers to an individual's cognitive evaluation of the quality of their life. The aim of the present study is to develop the current understanding of how perceived corruption, attitudes toward migration, perceived security, and strength of national identity influence life satisfaction. Additionally, the study examines how demographic variables of relationship status, social class, sex, religious affiliation, and country impact life satisfaction in the provided cultural context.

View Article and Find Full Text PDF

Spectral domain-optical coherence tomography plays a crucial role in the early detection and monitoring of multiple sclerosis (MS) pathophysiology. We aimed to quantify differences in retinal layer measures among different groups of MS and explored different variables that correlate with retinal measures. This study was reported according PRISMA guidelines.

View Article and Find Full Text PDF

This paper explicates a solution to building correspondences between molecular-scale transcriptomics and tissue-scale atlases. This problem arises in atlas construction and cross-specimen/technology alignment where specimens per emerging technology remain sparse and conventional image representations cannot efficiently model the high dimensions from subcellular detection of thousands of genes. We address these challenges by representing spatial transcriptomics data as generalized functions encoding position and high-dimensional feature (gene, cell type) identity.

View Article and Find Full Text PDF

We describe coordinate systems adapted for the space between two surfaces, such as those delineating the highly folded cortex in mammalian brains. These systems are estimated in order to satisfy geometric priors, including streamline normality or equivolumetric conditions on layers. We give a precise mathematical formulation of these problems, and present numerical simulations based on diffeomorphic registration methods, comparing them with recent approaches.

View Article and Find Full Text PDF