Publications by authors named "L Yengi"

The 2017 11th Workshop on Recent Issues in Bioanalysis took place in Los Angeles/Universal City, California, on 3-7 April 2017 with participation of close to 750 professionals from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day, week-long event - a full immersion week of bioanalysis, biomarkers and immunogenicity. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small- and large-molecule analysis involving LC-MS, hybrid ligand-binding assay (LBA)/LC-MS and LBA approaches.

View Article and Find Full Text PDF

The present manuscript describes the development of a cell-based reporter transcriptional activation assay for evaluating induction of UGT1A1. A reporter construct (pGL-UGT1A1-Luc) encompassing the proximal promoter (nucleotide -254 to +38) and distal enhancer (-3483 to -3194) regions of the human UGT1A1 gene was generated by PCR cloning, and co-transfected with a previously generated PXR construct (pSG5-PXR) into HepG2 cells. The system was then validated using known ligands of PXR, rifampicin (RIF), clotrimazole (CLOT) sulfinpyrazone (SPZ) and phenobarbital (PB), which produced dose dependent induction of UGT1A1 luciferase activity by 4.

View Article and Find Full Text PDF

Drug metabolism in pharmaceutical research has traditionally focused on the well-defined aspects of absorption, distribution, metabolism and excretion, commonly-referred to ADME properties of a compound, particularly in the areas of metabolite identification, identification of drug metabolizing enzymes (DMEs) and associated metabolic pathways, and reaction mechanisms. This traditional emphasis was in part due to the limited scope of understanding and the unavailability of in vitro and in vivo tools with which to evaluate more complex properties and processes. However, advances over the past decade in separate but related fields such as pharmacogenetics, pharmacogenomics and drug transporters, have dramatically shifted the drug metabolism paradigm.

View Article and Find Full Text PDF

An integrated systems biology approach of measuring mRNA, protein and enzyme activity, was used to determine the molecular mechanisms responsible for reductions in thyroid hormone levels observed in rats given 1000 mg/kg/day of a nonsteroidal progesterone agonist (NSP). The effect of NSP on drug metabolizing enzyme (DME) expression was determined in livers from treated and vehicle control rats. In treated males, CYP1A1, CYP2B1, CYP2B2, CYP2C12, CYP3A1 and UGT1A mRNAs increased by 2.

View Article and Find Full Text PDF

The last decade has seen a rapid expansion in the field of functional genomics, due mainly to the global gene expression profiling capabilities provided by techniques, such as microarray analysis. Application of these technologies in fields as diverse as plant research, to public health and environmental sciences, forensic science and drug research, shows the versatility of these tools and the promise they hold for revolutionizing research in the life sciences. In drug discovery, attempts have been made to use functional genomics in target identification and validation, lead selection and optimization, and in preclinical studies to predict clinical outcome.

View Article and Find Full Text PDF