Publications by authors named "L Winkler"

Mode-locked lasers are of interest for applications such as biological imaging, nonlinear frequency conversion, and single-photon generation. In the infrared, chip-integrated mode-locked lasers have been demonstrated through integration of laser diodes with low-loss photonic circuits. However, additional challenges, such as a higher propagation loss and smaller alignment tolerances, have prevented the realization of such lasers in the visible range.

View Article and Find Full Text PDF

The molecular strontium hydride 2 [(Cbz)SrH(L)] (L=benzene, toluene) was isolated and stabilized by employing a sterically demanding carbazole ligand (Cbz=1,8-bis(3,5-ditertbutylphenyl)-3,6-ditertbutylcarbazolyl). Compound 2 was synthesized via phenylsilane metathesis with the corresponding amide (Cbz)SrN(SiMe) and characterized by H NMR, XRD and vibrational spectroscopy methods. We further investigated the stoichiometric reactivity of 2 towards carbon monoxide, azobenzene and trimethylsilylacetylene, showing three distinct reactivity pathways: addition, reduction and deprotonation.

View Article and Find Full Text PDF

We present hybrid-integrated extended cavity diode lasers tunable around 637 nm, with a gain-wide spectral coverage of 8 nm. This tuning range addresses the zero-phonon line of nitrogen-vacancy centers and includes the wavelength of HeNe lasers (633 nm). Best performance shows wide mode-hop free tuning up to 97 GHz and a narrow intrinsic linewidth down to 10 kHz.

View Article and Find Full Text PDF

Extensive research indicates that fertilization outcomes are shaped by individual female and male traits that reflect their intrinsic quality. Yet, surprisingly little is known about the influence of interactions between the sexes and their adaptive significance in either externally or internally fertilizing species. Here, we review empirical evidence on how female-male interactions influence each stage of the fertilization process, including sperm transfer, transport, storage, chemoattraction and fertilization.

View Article and Find Full Text PDF

Typically, organic solar cells (OSCs) and photodetectors (OPDs) comprise an electron donating and accepting material to facilitate efficient charge carrier generation. This approach has proven successful in achieving high-performance devices but has several drawbacks for upscaling and stability. This study presents a fully vacuum-deposited single-component OPD, employing the neat oligothiophene derivative DCV2-5T in the photoactive layer.

View Article and Find Full Text PDF