Executive functions are higher-order mental processes that support goal-directed behavior. Among these processes, Inhibition, Updating, and Shifting have been considered core executive domains. In this meta-analysis, we comprehensively investigate the neural networks of these executive domains and we synthesize for the first time the neural convergences and divergences among the most frequently used executive paradigms within those domains.
View Article and Find Full Text PDFDeveloping approaches to improve motor skill learning is of considerable interest across multiple disciplines. Previous research has typically shown that repeating the same action on consecutive trials enhances short-term performance but has detrimental effects on longer term skill acquisition. However, most prior research has contrasted the effects of repetition only at the block level; in the current study we examined the effects of repeating individual trials embedded in a larger randomized block, a feature that is often overlooked when random trial orders are generated in learning tasks.
View Article and Find Full Text PDFBackground: Cognitive dysfunction is a frequent manifestation of multiple sclerosis (MS) but its effect on locomotor rehabilitation is unknown.
Objective: To study the impact of cognitive impairment on locomotor rehabilitation outcome in people with MS.
Methods: We performed a retrospective analysis involving ambulatory patients with MS who were admitted for intensive, inpatient, multidisciplinary rehabilitation at the National Multiple Sclerosis Center of Melsbroek between the years 2012 and 2017.
J Colloid Interface Sci
April 2017
Hypothesis: Complexation between Methyl orange and polycations involves multiple interactions dictated by molecular structure, composition (D/P), pH and ionic strength. The effect of ionic strength is considered a generic effect. By step-wise construction of complexes, we expect to gain insight in the nature of interactions and whether displacement by competing ions is a generic effect.
View Article and Find Full Text PDFPolyelectrolyte-surfactant complexes (PESC) are a class of materials which form spontaneously by self-assembly driven by electrostatic and hydrophobic interactions. PESC containing sodium lauryl ether sulfates (SLES) have found wide application in hair care products like shampoo. Typically, SLES with only one or two ethylene oxide (EO) groups are used for this application.
View Article and Find Full Text PDF