Heterozygous germline mutations in breast cancer 1 (BRCA1) strongly predispose women to breast cancer. BRCA1 plays an important role in DNA double-strand break (DSB) repair via homologous recombination (HR), which is important for tumor suppression. Although BRCA1-deficient cells are highly sensitive to treatment with DSB-inducing agents through their HR deficiency (HRD), BRCA1-associated tumors display heterogeneous responses to platinum drugs and poly(ADP-ribose) polymerase (PARP) inhibitors in clinical trials.
View Article and Find Full Text PDFUnlabelled: Inhibition of PARP is a promising therapeutic strategy for homologous recombination-deficient tumors, such as BRCA1-associated cancers. We previously reported that BRCA1-deficient mouse mammary tumors may acquire resistance to the clinical PARP inhibitor (PARPi) olaparib through activation of the P-glycoprotein drug efflux transporter. Here, we show that tumor-specific genetic inactivation of P-glycoprotein increases the long-term response of BRCA1-deficient mouse mammary tumors to olaparib, but these tumors eventually developed PARPi resistance.
View Article and Find Full Text PDFThe human multidrug resistance proteins MRP4 and MRP5 are organic anion transporters that have the unusual ability to transport cyclic nucleotides and some nucleoside monophosphate analogs. Base and nucleoside analogs used in the chemotherapy of cancer and viral infections are potential substrates. To assess the possible contribution of MRP4 and MRP5 to resistance against these drugs, we have investigated the transport mediated by MRP4 and MRP5.
View Article and Find Full Text PDFMercaptopurines have been used as anticancer agents for more than 40 years, and most acute lymphoblastic leukemias are treated with 6-mercaptopurine (6MP) or 6-thioguanine (TG). Overexpression of the two related multidrug resistance proteins MRP4 and MRP5 has been shown to confer some resistance against mercaptopurines, which has been attributed to extrusion of mercaptopurine metabolites by these transporters. We have analyzed the mercaptopurine metabolites formed in human embryonic kidney cells and determined which metabolites are extruded by MRP4 and MRP5.
View Article and Find Full Text PDFDespite accumulating evidence that multidrug resistance transporter proteins play a part in drug resistance in some clinical cancers, it remains unclear whether the relatively low levels of multidrug resistance transporter expression found in most untreated tumors could substantially affect their basal sensitivity to antineoplastic drugs. To shed light on this problem, the drug sensitivities of wild-type mouse cell lines were compared with those of lines in which the Mdr1a and Mdr1b genes encoding P-glycoprotein (P-gp) were inactivated and lines in which the Mrp1 gene was inactivated in addition to Mdr1a and Mdr1b. These models permit a clean dissection of the contribution of each transporter to drug resistance at expression levels similar to those in normal tissues and avoid complications that might arise from previous exposure of cell lines to drug selection.
View Article and Find Full Text PDF