Publications by authors named "L Valfre di Bonzo"

Liver fibrogenesis is sustained by pro-fibrogenic myofibroblast-like cells (MFs), mainly originating from activated hepatic stellate cells (HSC/MFs) or portal (myo)fibroblasts, and is favoured by hypoxia-dependent angiogenesis. Human HSC/MFs were reported to express vascular-endothelial growth factor (VEGF) and VEGF-receptor type 2 and to migrate under hypoxic conditions. This study was designed to investigate early and delayed signalling mechanisms involved in hypoxia-induced migration of human HSC/MFs.

View Article and Find Full Text PDF

Background & Aims: Liver fibrogenesis is sustained by myofibroblast-like cells originating from hepatic stellate cells (HSC/MFs), portal fibroblasts or bone marrow-derived cells, including mesenchymal stem cells (MSCs). Herein, we investigated the mechanistic role of intracellular generation of reactive oxygen species (ROS) and redox-sensitive signal transduction pathways in mediating chemotaxis, a critical profibrogenic response for human HSC/MFs and for MSC potentially engrafting chronically injured liver.

Methods: Intracellular generation of ROS and signal transduction pathways were evaluated by integrating morphological and molecular biology techniques.

View Article and Find Full Text PDF

Background & Aims: Extracellular Ca(++) activates cell membrane calcium-sensing receptors (CaRs), leading to renal tubule production of prostaglandins E(2) (PGE(2)), which decrease both sodium reabsorption in the thick ascending limb of Henle's loop and free-water reabsorption in collecting ducts.

Aims & Methods: To assess the activity of this diuretic system in experimental cirrhosis, we evaluated renal function, hormonal status, PGE(2) urinary excretion, and renal tissue concentrations of Na(+)-K(+)-2Cl(-) co-transporters (BSC-1) and CaRs in three groups of rats: one group of controls receiving 5% glucose solution (vehicle) intravenously and two groups of rats with CCl(4)-induced preascitic cirrhosis receiving either vehicle or 0.5mg i.

View Article and Find Full Text PDF

In any chronic liver disease (CLDs), whatever the aetiology, reiteration of liver injury results in persisting inflammation and progressive fibrogenesis, with chronic activation of the wound healing response in CLDs, representing a major driving force for progressive accumulation of ECM components, eventually leading to liver cirrhosis. Cirrhosis is characterized by fibrous septa dividing the hepatic parenchyma into regenerative pseudo-lobules, as well as by extensive changes in vascular architecture, the development of portal hypertension and related complications. Liver fibrogenesis (i.

View Article and Find Full Text PDF

Epithelial to mesenchymal transition (EMT) is a fundamental process, paradigmatic of the concept of cell plasticity, that leads epithelial cells to lose their polarization and specialized junctional structures, to undergo cytoskeleton reorganization, and to acquire morphological and functional features of mesenchymal-like cells. Although EMT has been originally described in embryonic development, where cell migration and tissue remodeling have a primary role in regulating morphogenesis in multicellular organisms, recent literature has provided evidence suggesting that the EMT process is a more general biological process that is also involved in several pathophysiological conditions, including cancer progression and organ fibrosis. This review offers first a comprehensive introduction to describe major relevant features of EMT, followed by sections dedicated on those signaling mechanisms that are known to regulate or affect the process, including the recently proposed role for oxidative stress and reactive oxygen species (ROS).

View Article and Find Full Text PDF