Publications by authors named "L V Vanchugova"

The objective of this study was to compare the properties of core-shell nanoparticles with a PLGA core and shells composed of different types of polymers, focusing on their structural integrity. The core PLGA nanoparticles were prepared either through a high-pressure homogenization-solvent evaporation technique or nanoprecipitation, using poloxamer 188 (P188), a copolymer of divinyl ether with maleic anhydride (DIVEMA), and human serum albumin (HSA) as the shell-forming polymers. The shells were formed through adsorption, interfacial embedding, or conjugation.

View Article and Find Full Text PDF

Pharmacometric analysis is often used to quantify the differences and similarities between formulation prototypes. In the regulatory framework, it plays a significant role in the evaluation of bioequivalence. While non-compartmental analysis provides an unbiased data evaluation, mechanistic compartmental models such as the physiologically-based nanocarrier biopharmaceutics model promise improved sensitivity and resolution for the underlying causes of inequivalence.

View Article and Find Full Text PDF

Brain delivery of drugs by nanoparticles is a promising strategy that could open up new possibilities for the chemotherapy of brain tumors. As demonstrated in previous studies, the loading of doxorubicin in poly(lactide-co-glycolide) nanoparticles coated with poloxamer 188 (Dox-PLGA) enabled the brain delivery of this cytostatic that normally cannot penetrate across the blood-brain barrier in free form. The Dox-PLGA nanoparticles produced a very considerable anti-tumor effect against the intracranial 101.

View Article and Find Full Text PDF

The influence of insulin preparations (Actrapid and Ransulin) on the glucose and insulin blood level has been studied in patients with diabetes mellitus. It has been shown that comparable changes in the measured parameters are achieved in most patients with oral doses of Ransulin that are two to three times higher than the doses of Actrapid.

View Article and Find Full Text PDF

The dependence of the activity of trypsin immobilized in polyacrylamide hydrogel on the hydrogel swelling ratio, the size distribution of its pores, and the means of enzyme binding has been studied. It has been shown that the most favorable conditions for immobilized trypsin are provided upon its binding to hydrogel via trypsin macromonomer copolymerization with acrylamide and a linking agent in the presence of a modifier that limits polymer chain growth.

View Article and Find Full Text PDF