Renal artery denervation (RDN) has been proposed for resistant arterial hypertension. Beyond conventional radiofrequency (RF) ablation, there are emerging RDN technologies, including laser catheter ablation. We aimed at evaluamting the local effects of laser ablation on the renal artery and perivascular nerve injury in comparison with radiofrequency ablation.
View Article and Find Full Text PDFBMC Pulm Med
December 2021
Background: Mechanisms of positive effects of pulmonary artery (PA) denervation (PADN) remain poorly understood. The study aimed to evaluate pulmonary hemodynamic changes after PADN and their association with the extent of PA wall damage in an acute thromboxane A2 (TXA2)-induced pulmonary hypertension (PH) model in swine.
Methods: In this experimental sham-controlled study, 17 normotensive male white Landrace pigs (the mean weight 36.
Biomed Res Int
January 2022
Objective: We aimed to assess the effects of renal denervation (RDN) on systemic and pulmonary hemodynamics in a swine model of thromboxane A2- (TXA2-) induced pulmonary arterial hypertension (PAH).
Methods: The study protocol comprised two PAH inductions with a target mean pulmonary artery pressure (PAP) of 40 mmHg at baseline and following either the RDN or sham procedure. Ten Landrace pigs underwent the first PAH induction; then, nine animals were randomly allocated in 1 : 1 ratio to RDN or sham procedure; the second PAH induction was performed in eight animals (one animal died of pulmonary embolism during the first PAH induction, and one animal died after RDN).
Background: Pulmonary artery denervation (PADN) is an evolving interventional procedure capable to reduce pulmonary artery (PA) pressure. We aimed to compare PA nerve distribution in different specimens and assess the feasibility of an ovine model for a denervation procedure and evaluate the acute changes induced by laser energy.
Methods: The experiment was divided into two phases: (1) the analysis of PA nerve distribution in sheep, pigs, and humans using histological and immunochemical methods; (2) fiberoptic PADN in sheep and postmortem laser lesion characteristics.
U46619, a synthetic analogue of thromboxane A2 was used for modeling acute stable and reversible pulmonary arterial hypertension. Administration of U46619 in high doses led to vascular collapse and inhibition of cardiac function. The doses of U46619 were empirically selected that allow attaining the target level of pulmonary hypertension without systemic hemodynamic disturbances.
View Article and Find Full Text PDF