Publications by authors named "L V Gusta"

Anatomical, metabolic and microbial factors were identified that contribute to sequential freezing in wheat leaves and likely contribute to supercooling in the youngest leaves and potentially meristematic regions. Infrared thermography (IR) has been used to observe wheat leaves freezing independently and in an age-related sequence with older leaves freezing first. To determine mechanisms that might explain this sequence of freezing several analytical approaches were used: (1) The size of xylem vessels, in proximity to where freezing initiated, was measured to see if capillary freezing point depression explained sequential freezing.

View Article and Find Full Text PDF

Meaningful improvements in winter cereal cold hardiness requires a complete model of freezing behaviour in the critical crown organ. Magnetic resonance microimaging diffusion-weighted experiments provided evidence that cold acclimation decreased water content and mobility in the vascular transition zone (VTZ) and the intermediate zone in rye (Secale cereale L. Hazlet) compared with wheat (Triticum aestivum L.

View Article and Find Full Text PDF

An extremely high resolution infrared camera demonstrated various freezing events in wheat under natural conditions. Many of those events shed light on years of misunderstanding regarding freezing in small grains. Infrared thermography has enhanced our knowledge of ice nucleation and propagation in plants through visualization of the freezing process.

View Article and Find Full Text PDF

Freezing events that occur when plants are actively growing can be a lethal event, particularly if the plant has no freezing tolerance. Such frost events often have devastating effects on agricultural production and can also play an important role in shaping community structure in natural populations of plants, especially in alpine, sub-arctic, and arctic ecosystems. Therefore, a better understanding of the freezing process in plants can play an important role in the development of methods of frost protection and understanding mechanisms of freeze avoidance.

View Article and Find Full Text PDF

How plants adapt to freezing temperatures and acclimate to survive the formation of ice within their tissues has been a subject of study for botanists and plant scientists since the latter part of the 19th century. In recent years, there has been an explosion of information on this topic and molecular biology has provided new and exciting opportunities to better understand the genes involved in cold adaptation, freezing response and environmental stress in general. Despite an exponential increase in our understanding of freezing tolerance, understanding cold hardiness in a manner that allows one to actually improve this trait in economically important crops has proved to be an elusive goal.

View Article and Find Full Text PDF