Objective: To investigate the efficacy and potential mechanism of Bailing capsule (, BL) anti-autoimmune thyroiditis (AIT).
Methods: Based on the AIT rat model, the effect of BL in alleviating AIT was evaluated by detecting serum thyroid index free triiodothyronine (FT3), free thyroxine (FT4), thyroid-stimulating hormone (TSH), thyroglobulin antibody (TGAb), thyroid peroxidase antibody (TPOAb), and inflammatory factors Interferon-gamma (IFN-γ), Interleukin-4, -10, and -12 (IL-4, IL-10, and IL-12) as well as thyroid tissue Hematoxylin-eosin (HE) staining and ultrastructure observation. The mechanism of BL was explored by combining transcriptome and proteome analysis, and further verified by Western blot (WB).
Background: In recent years, the vaccinia oncolytic virus has entered the clinical trial stage of examination and shown good progress. It has many advantages, such as good safety, high oncolytic efficiency, and the regulation ability of the tumor microenvironment, and is expected to be successfully used in the clinical treatment of tumors in the future. However, no bibliometric analysis has so far been performed that generalizes horizontally across this field.
View Article and Find Full Text PDFBackground: The level of linked N-acetylglucosamine (O-GlcNAc) has been proved to be a sensor of cell state, but its relationship with hyperoxia-induced alveolar type 2 epithelial cells injure and bronchopulmonary dysplasia (BPD) has not been clarified. In this study, we evaluated if these effects ultimately led to functional damage in hyperoxia-induced alveolar cells.
Methods: We treated RLE-6TN cells at 85% hyperoxia for 0, 24 and 48 h with Thiamet G (TG), an OGA inhibitor; OSMI-1 (OS), an OGT inhibitor; or with UDP-GlcNAc, which is involved in synthesis of O-GlcNAc as a donor.