Iron oxide nanoparticles (IONPs) are suitable materials for contrast enhancement in magnetic resonance imaging (MRI). Their potential clinical applications range from diagnosis to therapy and follow-up treatments. However, a deeper understanding of the interaction between IONPs, culture media and cells is necessary for expanding the application of this technology to different types of cancer therapies.
View Article and Find Full Text PDFThis study evaluated the formation of a Masquelet-induced membrane created through the formation of segmental bone defects in the radii of 15 healthy domestic chickens. When the chickens were in a surgical plane of anesthesia, a 1.5-cm segmental bone defect was produced in the left radius, which was subsequently filled with a bone cement spacer during its pasty polymerization phase.
View Article and Find Full Text PDFMagnetic nanoparticles (MNPs), and in particular iron oxide nanoparticles (mainly magnetite and maghemite), are being widely used in the form of aqueous colloids for biomedical applications. In such colloids, nanoparticles tend to form assemblies, either aggregates, if the union is permanent, or agglomerates, if it is reversible. These clustering processes have a strong impact on the MNPs' properties that are often not well understood.
View Article and Find Full Text PDFPurpose: To describe the frequency of head and/or pancreas uncinate process uptake of 99mTc-HYNIC-TOC, to study its nature, and analyze its diagnostic value.
Materials And Methods: Retrospective evaluation of 47 consecutive 99mTc-HYNIC-TOC examinations was conducted. Head and/or pancreas uncinate process uptake was considered to be physiological in patients with normal CT at the same episode and in follow-up.