Publications by authors named "L Toledo-Bravo de Laguna"

Food structure modification by increasing viscosity or adding heterogeneity to the food product has shown to effectively change food oral processing. In this study, it was hypothesized that the addition of gas to purees could affect oral processing. This was achieved by creating different structures in purees using a gas syphon, vacuum and syphon + vacuum.

View Article and Find Full Text PDF

The aim of this study was to investigate the modification of mechanical, rheological, and sensory properties of chickpea pastes and gels by incorporating other ingredients (olive oil or quinoa flour), to develop plant-based alternatives that meet consumer demands for healthy, natural, and enjoyable food products. The pastes and gels were made with different amounts of chickpea flour (9% and 12%, respectively). For each product, a first set of products with different oil content and a second set with quinoa flour (either added or replaced) were produced.

View Article and Find Full Text PDF

This study explores the impact of various types of carbonation on sensory stimulation in the mouth, salivary secretion and the neurotransmitter substance P (SP), as well as body responses such as heart rate (HR) and Galvanic Skin Response (GSR). Three types of carbonation (one made using a soda machine, another carbonated with a gasifier, and the last commercial sparkling water) were used to produce different bubbles resulting in distinct sensory characteristics assessed by a trained panel. The impact of carbonation was measured by recording changes in salivary flow rate, SP levels, salivary secretory immunoglobulin A (SIgA), HR, and GSR in fifteen healthy participants.

View Article and Find Full Text PDF

Unlabelled: Texture-modified diets (TMDs) are a primary compensatory treatment for hospitalized older patients with swallowing and mastication disorders. Nevertheless, the lack of a protocol for evaluating their objective textural properties hampers their industrialization and optimal patient care.

Objectives: This study aimed (a) to evaluate the textural properties (maximum force, cohesiveness, and adhesiveness) and biomechanics of food oral processing (mastication cycles, time, and frequency) of ten fork-mashable dishes (Texture E BDA/IDDSI level 6), (b) to explore the impact of oral processing on texture, and (c) to measure the properties of the ready-to-swallow bolus (RSB) in healthy adults.

View Article and Find Full Text PDF

The need to provide novel, nutritious plant-based products requires seeking high-value, sustainable protein sources, like quinoa and lentils, having an increased digestibility and lacking antinutrients. Fungal fermentation has evidenced enhanced nutritional value of flours obtained from these grains. However, research into techno-functional properties, essential to the new product development, is lacking.

View Article and Find Full Text PDF