We report on the drying of films of polymer solutions under a controlled laminar air flow. Temperature measurements reveal that a drying front propagates in the film at constant velocity. Using thermal calibration, we are able to quantitatively determine the local drying rate of the film, and we find it agrees with conservation arguments.
View Article and Find Full Text PDFEmulsion droplets of silicone oil (PDMS) are widely used as antifoaming agents but, in the case of non-aqueous foams, the mechanisms responsible for the bursting of the films separating the bubbles remain unclear. We consider a ternary non-aqueous liquid mixture in which PDMS-rich microdroplets are formed by spontaneous emulsification. In order to quantitatively assess the effect of the emulsified microdroplets, we measure the lifetime of sub-micrometer-thick suspended films of these emulsions as well as the time variations of their thickness profiles.
View Article and Find Full Text PDFThe spreading dynamics of a droplet of pure liquid deposited on a rigid, nonsoluble substrate has been extensively investigated. In a purely hydrodynamic description, the dynamics of the contact line is determined by a balance between the energy associated with the capillary driving force and the energy dissipated by the viscous shear in the liquid. This balance is expressed by the Cox-Voinov law, which relates the spreading velocity to the contact angle.
View Article and Find Full Text PDFWe study the formation of a glassy skin at the air interface of drying polymer solutions. We introduce a simple approximation, which is valid for most diffusion problems, and which allows us to derive analytical relationships for the polymer concentration as a function of time. We show that the approximate results differ by less than 15% from those obtained by numerically solving the diffusion equation.
View Article and Find Full Text PDFCorrection for 'Developing an advanced gut on chip model enabling the study of epithelial cell/fibroblast interactions' by Marine Verhulsel , , 2021, , 365-377, https://doi.org/10.1039/d0lc00672f.
View Article and Find Full Text PDF