Nitric oxide is a highly reactive molecule, diffusible and therefore ubiquitous in the central nervous system. Consequently, nitric oxide or nitric oxide-derived nitrogen oxides must enter into contact with neuromodulators and they can modify these molecules, especially monoamines, and thus change their regulatory action on synaptic transmission. We tested this possibility on a well-known, identified cholinergic synapse of Aplysia buccal ganglion, in which we have found that evoked acetylcholine release was decreased by extracellularly applied serotonin.
View Article and Find Full Text PDFTrends Neurosci
April 1999
It is widely accepted that the modulation of the presynaptic Ca2+ influx is one of the main mechanisms by which neurotransmitter release can be controlled. The well-identified cholinergic synapse in the buccal ganglion of Aplysia has been used to study the modulations that affect presynaptic Ca2+ transients and to relate this to quantal evoked neurotransmitter release. Three types of Ca2+ channel (L, N and P) are present in the presynaptic neurone at this synapse.
View Article and Find Full Text PDF2,5-Diterbutyl-1,4-benzohydroquinone, a specific blocker of Ca2+-ATPase pumps, increased acetylcholine release from an identified synapse of Aplysia, as well as from Torpedo and mouse caudate nucleus synaptosomes. Because 2,5-diterbutyl-1,4-benzohydroquinone does not change the presynaptic Ca2+ influx, the enhancement of acetylcholine release could be due to an accumulation of Ca2+ in the terminal. This possibility was further checked by studying the effects of 2,5-diterbutyl-1,4-benzohydroquinone on twin pulse facilitation, classically attributed to residual Ca2+.
View Article and Find Full Text PDF1. Presynaptic injection of cyclic ADP-ribose (cADPR), a modulator of the ryanodine receptor, increased the postsynaptic response evoked by a presynaptic spike at an identified cholinergic synapse in the buccal ganglion of Aplysia californica. 2.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 1996
Nitric oxide (NO) produced opposite effects on acetylcholine (ACh) release in identified neuroneuronal Aplysia synapses depending on the excitatory or the inhibitory nature of the synapse. Extracellular application of the NO donor, SIN-1, depressed the inhibitory postsynaptic currents (IPSCs) and enhanced the excitatory postsynaptic currents (EPSCs) evoked by presynaptic action potentials (1/60 Hz). Application of a membrane-permeant cGMP analog mimicked the effect of SIN-1 suggesting the participation of guanylate cyclase in the NO pathway.
View Article and Find Full Text PDF