Publications by authors named "L T Volova"

Mandibular bone defect reconstruction remains a significant challenge for surgeons worldwide. Among multiple biodegradable biopolymers, allogeneic bone scaffolds derived from human sources have been used as an alternative to autologous bone grafts, providing optimal conditions for cell recruitment, adhesion, and proliferation and demonstrating significant osteogenic properties. This study aims to investigate the bone microstructure of the human scapula as a source for allogeneic bone scaffold fabrication for mandibular tissue engineering purposes.

View Article and Find Full Text PDF

The current paper highlights the active development of tissue engineering in the field of the biofabrication of living tissue analogues through 3D-bioprinting technology. The implementation of the latter is impossible without important products such as bioinks and their basic components, namely, hydrogels. In this regard, tissue engineers are searching for biomaterials to produce hydrogels with specified properties both in terms of their physical, mechanical and chemical properties and in terms of local biological effects following implantation into an organism.

View Article and Find Full Text PDF

Introduction: Schizophrenia is a severe mental illness causing significant impairment in personal, family, social, educational, occupational, and other important areas of life. While there is no widely accepted endophenotype, peripheral blood cells may serve as an accessible model of intracellular changes in schizophrenia.

Methods: We reviewed the literature on the query "peripheral blood mononuclear cells AND schizophrenia" in Medline (Pubmed), selecting studies that searched for specific biomarkers of schizophrenia.

View Article and Find Full Text PDF

The musculoskeletal system, consisting of bones and cartilage of various types, muscles, ligaments, and tendons, is the basis of the human body. However, many pathological conditions caused by aging, lifestyle, disease, or trauma can damage its elements and lead to severe disfunction and significant worsening in the quality of life. Due to its structure and function, articular (hyaline) cartilage is the most susceptible to damage.

View Article and Find Full Text PDF

Biopolymers based on the amniotic membrane compare favorably with synthetic materials in that, along with a specific 2D structure, they have biologically active properties. However, in recent years, there has been a tendency to perform decellularization of the biomaterial during the preparation of the scaffold. In this study, we studied the microstructure of 157 samples and identified individual biological components in the manufacture of a medical biopolymer from an amniotic membrane using various methods.

View Article and Find Full Text PDF