Publications by authors named "L T Chan"

Objective: To describe the real-world clinical impact of a commercially available plasma cell-free DNA metagenomic next-generation sequencing assay, the Karius test (KT).

Methods: We retrospectively evaluated the clinical impact of KT by clinical panel adjudication. Descriptive statistics were used to study associations of diagnostic indications, host characteristics, and KT-generated microbiologic patterns with the clinical impact of KT.

View Article and Find Full Text PDF

At this stage in the COVID-19 pandemic, most infections are "breakthrough" infections that occur in individuals with prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure. To refine long-term vaccine strategies against emerging variants, we examined both innate and adaptive immunity in breakthrough infections. We performed single-cell transcriptomic, proteomic, and functional profiling of primary and breakthrough infections to compare immune responses from unvaccinated and vaccinated individuals during the SARS-CoV-2 Delta wave.

View Article and Find Full Text PDF

Background: Patients on hemodialysis (HD) have a high burden of emotional and physical symptoms. These symptoms are often under-recognized. NLP can be used to identify patient symptoms from the EHR.

View Article and Find Full Text PDF

Gene enhancers often form long-range contacts with promoters, but it remains unclear if the activity of enhancers and their chromosomal contacts are mediated by the same DNA sequences and recruited factors. Here, we study the effects of expression quantitative trait loci (eQTLs) on enhancer activity and promoter contacts in primary monocytes isolated from 34 male individuals. Using eQTL-Capture Hi-C and a Bayesian approach considering both intra- and inter-individual variation, we initially detect 19 eQTLs associated with enhancer-eGene promoter contacts, most of which also associate with enhancer accessibility and activity.

View Article and Find Full Text PDF

The generation time, representing the interval between infections in primary and secondary cases, is essential for understanding and predicting the transmission dynamics of seasonal influenza, including the real-time effective reproduction number (Rt). However, comprehensive generation time estimates for seasonal influenza, especially since the 2009 influenza pandemic, are lacking. We estimated the generation time utilizing data from a 7-site case-ascertained household study in the United States over two influenza seasons, 2021/2022 and 2022/2023.

View Article and Find Full Text PDF