Background: Metabolic substrate utilization in HFpEF (heart failure with preserved ejection fraction), the leading cause of heart failure worldwide, is pivotal to syndrome pathogenesis and yet remains ill defined. Under resting conditions, oxidation of free fatty acids (FFA) is the predominant energy source of the heart, supporting its unremitting contractile activity. In the context of disease-related stress, however, a shift toward greater reliance on glucose occurs.
View Article and Find Full Text PDFThe heart alters the rate and relative oxidation of fatty acids and glucose based on availability and energetic demand. Insulin plays a crucial role in this process diminishing fatty acid and increasing glucose oxidation when glucose availability increases. Loss of insulin sensitivity and metabolic flexibility can result in cardiovascular disease.
View Article and Find Full Text PDFMyocardial infarction (MI) is characterized by a significant loss of cardiomyocytes (CMs), and it is suggested that reactive oxygen species (ROS) are involved in cell cycle arrest, leading to impaired CM renewal. Thioredoxin-1 (Trx-1) scavenges ROS and may play a role in restoring CM renewal. However, the truncated form of Trx-1, Trx-80, can compromise its efficacy by exerting antagonistic effects.
View Article and Find Full Text PDFCardiomyocytes are highly metabolic cells responsible for generating the contractile force in the heart. During fetal development and regeneration, these cells actively divide but lose their proliferative activity in adulthood. The mechanisms that coordinate their metabolism and proliferation are not fully understood.
View Article and Find Full Text PDFObesity affects a growing fraction of the population and is a risk factor for type 2 diabetes and cardiovascular disease. Even in the absence of hypertension and coronary artery disease, type 2 diabetes can result in a heart disease termed diabetic cardiomyopathy. Diminished glucose oxidation, increased reliance on fatty acid oxidation for energy production, and oxidative stress are believed to play causal roles.
View Article and Find Full Text PDF