Publications by authors named "L Szunyogh"

In response to COVID-19 pandemic, governments all over the world limited the movement of people and mandated temporary closure of different institutions. While, these measures helped to reduce the spread of COVID-19, stagnant water can cause water quality deterioration. Stagnation is considered in context with the proliferation of pathogenic and facultatively pathogenic bacteria which pose potential health risks to humans.

View Article and Find Full Text PDF

Incommensurate magnetism in CrBis studied in terms of a spin model based on density functional theory calculations. Heisenberg exchange interactions derived from the paramagnetic phase using the disordered local moment (DLM) theory show significant differences compared with those resulting from the treatment of the material as a ferromagnet; of these two methods, the DLM theory is found to give a significantly more realistic description. We calculate strongly ferromagnetic interactions between Cr planes but largely frustrated interactions within Cr planes.

View Article and Find Full Text PDF

A new computational scheme is presented based on a combination of the conjugate gradient and the Newton-Raphson method to self-consistently minimize the energy within local spin-density functional theory, thus to identify the ground state magnetic order of a finite cluster of atoms. The applicability of the newoptimization method is demonstrated for Fe chains deposited on different metallic substrates. The optimized magnetic ground states of the Fe chains on Rh(111) are analyzed in details and a good comparison is found with those obtained from an extended Heisenberg model containing first principles based interaction parameters.

View Article and Find Full Text PDF

We present results for the electronic and magnetic structure of Mn and Fe clusters on Nb(110) surface, focusing on building blocks of atomic chains as possible realizations of topological superconductivity. The magnetic ground states of the atomic dimers and most of the monatomic chains are determined by the nearest-neighbor isotropic interaction. To gain physical insight, the dependence on the crystallographic direction as well as on the atomic coordination number is analyzed via an orbital decomposition of this isotropic interaction based on the spin-cluster expansion and the difference in the local density of states between ferromagnetic and antiferromagnetic configurations.

View Article and Find Full Text PDF

Magnetic atoms coupled to the Cooper pairs of a superconductor induce Yu-Shiba-Rusinov states (in short Shiba states). In the presence of sufficiently strong spin-orbit coupling, the bands formed by hybridization of the Shiba states in ensembles of such atoms can support low-dimensional topological superconductivity with Majorana bound states localized on the ensembles' edges. Yet, the role of spin-orbit coupling for the hybridization of Shiba states in dimers of magnetic atoms, the building blocks for such systems, is largely unexplored.

View Article and Find Full Text PDF