Publications by authors named "L Svecova"

This study evaluates the ability of a choline chloride:ethylene glycol-based deep eutectic solvent (DES) to dissolve lithium cobalt oxide (LCO) which is used as a cathode active material in Li-ion batteries. Both a commercial powder and spent cathodes have been used. It was demonstrated that if HCl is added in a small proportion, a rapid and efficient LCO dissolution can be achieved.

View Article and Find Full Text PDF

The resistance of the emerging human pathogen Stenotrophomonas maltophilia to tetracycline antibiotics mainly depends on multidrug efflux pumps and ribosomal protection enzymes. However, the genomes of several strains of this Gram-negative bacterium code for a FAD-dependent monooxygenase (SmTetX) homologous to tetracycline destructases. This protein was recombinantly produced and its structure and function were investigated.

View Article and Find Full Text PDF

Health conditions contribute significantly to patients' quality of life. Healthcare infrastructure and healthcare services, including their accessibility, belong to objective factors influencing their perception of their health. The growing disparity between supply and demand for specialized inpatient facilities due to the aging population calls for new solutions, including eHealth technologies.

View Article and Find Full Text PDF

S1 nuclease from Aspergillus oryzae is a single-strand-specific nuclease from the S1/P1 family that is utilized in biochemistry and biotechnology. S1 nuclease is active on both RNA and DNA but with differing catalytic efficiencies. This study clarifies its catalytic properties using a thorough comparison of differences in the binding of RNA and DNA in the active site of S1 nuclease based on X-ray structures, including two newly solved complexes of S1 nuclease with the products of RNA cleavage at atomic resolution.

View Article and Find Full Text PDF

Fucosylated compounds are abundantly present in nature and are associated with many biological processes, therefore carrying great potential for use in medicine and biotechnology. Efficient ways to modify fucosylated compounds are still being developed. Promising results are provided by glycosyl hydrolases with transglycosylating activities, such as α-l-fucosidase isoenzyme 2 from Paenibacillus thiaminolyticus (family GH151 of Carbohydrate-Active enZYmes).

View Article and Find Full Text PDF