Objective And Rationale: Inflammatory bowel disease, including Crohn's disease and ulcerative colitis, manifests with chronic intestinal inflammation and frequent sequential fibrosis. Current pharmacological therapies may show harmful side effects and are not useful for prevention or resolution of fibrosis. Thus, the use of alternative therapies is emerging as a novel useful approach.
View Article and Find Full Text PDFRecent evidence indicates that the gut microbiota (GM) has a significant impact on the inflammatory bowel disease (IBD) progression. Our aim was to investigate the GM profiles, the Microbial Dysbiosis Index (MDI) and the intestinal microbiota-associated markers in relation to IBD clinical characteristics and disease state. We performed 16S rRNA metataxonomy on both stools and ileal biopsies, metabolic dysbiosis tests on urine and intestinal permeability and mucosal immunity activation tests on the stools of 35 IBD paediatric patients.
View Article and Find Full Text PDFInflammatory bowel diseases (IBD) are chronic relapsing disorders with increasing prevalence. Knowledge gaps still limit the possibility to develop more specific and effective therapies. Using a dextran sodium sulfate colitis mouse model, we found that inflammation increased the total number and altered the frequencies of leukocytes within colon mesenteric lymph nodes (cMLNs).
View Article and Find Full Text PDFBackground And Aims: Intestinal fibrosis is a common complication of Inflammatory Bowel Disease (IBD), namely Crohn's disease (CD) and ulcerative colitis (UC), but the precise mechanism by which it occurs is incompletely understood hampering the development of effective therapeutic strategies. Here, we aimed at inducing and characterizing an inflammation-mediated fibrosis in patient-derived organoids (PDOs) issued from crypts isolated from colonic mucosal biopsies of IBD pediatric patients and age matched-control subjects (CTRLs).
Methods: Inflammatory-driven fibrosis was induced by exposing CTRL-, CD- and UC-PDOs to the pro-inflammatory cytokine TNF-α for one day, followed by a co-treatment with TNF-α and TGF-β1 for three days.
Extracellular High-mobility group box 1 (HMGB1) contributes to the pathogenesis of inflammatory disorders, including inflammatory bowel diseases (IBD). Poly (ADP-ribose) polymerase 1 (PARP1) has been recently reported to promote HMGB1 acetylation and its secretion outside cells. In this study, the relationship between HMGB1 and PARP1 in controlling intestinal inflammation was explored.
View Article and Find Full Text PDF