Gel polymer electrolytes (GPEs) represent a credible alternative to organic liquid electrolytes (LEs) for safer sodium metal batteries. As a compromise between solid polymer electrolytes and LEs, GPEs ensure a good ionic conductivity, improve the electrolyte/electrode interface, and prevent solvent leaks. Herein, a GPE based on acrylate-bifunctionalized polyethylene glycol chains mixed with an ether solvent (TEGDME) and a polyethylene glycol diacrylate (PEG600DA) in a 50/50 wt % ratio was prepared by ultraviolet photopolymerization.
View Article and Find Full Text PDFSupercritical CO (scCO) extraction assisted by complexing copolymers is a promising process to recover valuable metals from lithium-ion batteries (LIBs). CO, in addition to being non-toxic, abundant and non-flammable, allows an easy separation of metal-complexes from the extraction medium by depressurization, limiting the wastewater production. In this study, CO-philic gradient copolymers bearing phosphonic diacid complexing groups (poly(vinylbenzylphosphonic diacid-co-1,1,2,2-tetrahydroperfluorodecylacrylate), p(VBPDA-co-FDA)) were synthesized for the extraction of lithium and cobalt from LiCoO cathode material.
View Article and Find Full Text PDFBackground: In the randomized phase II REGOMA trial, regorafenib showed promising activity in patients with recurrent glioblastoma. We conducted a large, multicenter, prospective, observational study to confirm the REGOMA data in a real-world setting.
Patients And Methods: The major inclusion criteria were histologically confirmed diagnosis of glioblastoma according to the World Health Organization (WHO) 2016 classification and relapse after radiotherapy with concurrent/adjuvant temozolomide treatment, good performance status [Eastern Cooperative Oncology Group performance status (ECOG PS 0-1)] and good liver function.
High theoretical energy density and low cost make lithium-sulfur (LSB) batteries a promising system for next-generation energy storage. LSB performance largely depends on efficient reversible conversion of elemental sulfur to LiS. Here, well-designed sulfur host materials including Fe or Co single atoms embedded on N-doped reduced graphene oxide (MNC/G with M = Fe or Co) are proposed to tackle the LSB challenges and enhance the electrochemical performance.
View Article and Find Full Text PDF