Publications by authors named "L Steier"

Fluorescence imaging is an effective method for detecting porphyrin production in bacteria, leveraging the natural fluorescence properties of porphyrins. Here we use a simple, lightweight, hands-free device for rapid, non-invasive assessments in clinical settings, microbial research, and diagnostic applications. Specifically in this study, we examined 15 bacterial and 2 fungal strains commonly associated with skin, oral, and/or multi-site infections at wound sites for their ability to autofluoresce based on their porphyrin production.

View Article and Find Full Text PDF

Introduction: The aim of this study was to evaluate the volume of dentin removal and the volume of remnants of restorative material after the removal of an esthetic restorative coronal set and cervical barrier in endodontically treated mandibular molars with the aid of different magnification methods using 3-dimensional (3D) micro-computed tomographic (micro-CT) morphometric analysis.

Methods: A sample of 30 mandibular first molars (N = 30) was used. All teeth were endodontically treated, and the specimens were initially scanned using micro-CT imaging and reconstructed.

View Article and Find Full Text PDF

Objectives: This study aimed to compare the antimicrobial action, cytotoxicity, cleaning ability, and erosion of dentine of hypochlorous acid (HClO) obtained from an electrolytic device at two different concentrations (Dentaqua) and three concentrations of sodium hypochlorite (NaOCl).

Methods: Microbiological test-The root canals of sixty single-rooted extracted human teeth were inoculated with Enterococcus faecalis and divided into 6 groups (n = 10), according to decontamination protocol: DW (control); 1% NaOCl; 2.5% NaOCl; 5.

View Article and Find Full Text PDF

This study reports a comparison of the kinetics of electrochemical (EC) versus photoelectrochemical (PEC) water oxidation on bismuth vanadate (BiVO) photoanodes. Plots of current density versus surface hole density, determined from operando optical absorption analyses under EC and PEC conditions, are found to be indistinguishable. We thus conclude that EC water oxidation is driven by the Zener effect tunneling electrons from the valence to conduction band under strong bias, with the kinetics of both EC and PEC water oxidation being determined by the density of accumulated surface valence band holes.

View Article and Find Full Text PDF