The interferon pathway, a key antiviral defense mechanism, is being considered as a therapeutic target in COVID-19. Both, substitution of interferon and JAK/STAT inhibition to limit cytokine storms have been proposed. However, little is known about possible abnormalities in STAT signaling in immune cells during SARS-CoV-2 infection.
View Article and Find Full Text PDFPenalized regression methods that perform simultaneous model selection and estimation are ubiquitous in statistical modeling. The use of such methods is often unavoidable as manual inspection of all possible models quickly becomes intractable when there are more than a handful of predictors. However, automated methods usually fail to incorporate domain-knowledge, exploratory analyses, or other factors that might guide a more interactive model-building approach.
View Article and Find Full Text PDFA dynamic treatment regime is a sequence of decision rules, each of which recommends treatment based on features of patient medical history such as past treatments and outcomes. Existing methods for estimating optimal dynamic treatment regimes from data optimize the mean of a response variable. However, the mean may not always be the most appropriate summary of performance.
View Article and Find Full Text PDFThis paper develops a nonparametric shrinkage and selection estimator via the measurement error selection likelihood approach recently proposed by Stefanski, Wu, and White. The Measurement Error Kernel Regression Operator (MEKRO) has the same form as the Nadaraya-Watson kernel estimator, but optimizes a measurement error model selection likelihood to estimate the kernel bandwidths. Much like LASSO or COSSO solution paths, MEKRO results in solution paths depending on a tuning parameter that controls shrinkage and selection via a bound on the harmonic mean of the pseudo-measurement error standard deviations.
View Article and Find Full Text PDFChronic illness treatment strategies must adapt to the evolving health status of the patient receiving treatment. Data-driven dynamic treatment regimes can offer guidance for clinicians and intervention scientists on how to treat patients over time in order to bring about the most favorable clinical outcome on average. Methods for estimating optimal dynamic treatment regimes, such as Q-learning, typically require modeling nonsmooth, nonmonotone transformations of data.
View Article and Find Full Text PDF