Gain-of-function mutations in NLRP3 are linked to cryopyrin-associated periodic syndromes (CAPS). Although NLRP3 autoinflammasome assembly triggers inflammatory cytokine release, its activation mechanisms are not fully understood. Our study used a functional genetic approach to identify regulators of NLRP3 inflammasome formation.
View Article and Find Full Text PDFThe PYRIN inflammasome pathway is part of the innate immune response against invading pathogens. Unprovoked continuous activation of the PYRIN inflammasome drives autoinflammation and underlies several autoinflammatory diseases, including familial Mediterranean fever (FMF) syndrome. PYRIN inflammasome formation requires PYRIN dephosphorylation and oligomerization by molecular mechanisms that are poorly understood.
View Article and Find Full Text PDFBackground: The cryopyrin-associated periodic syndromes (CAPS) comprise a group of rare autoinflammatory diseases caused by gain-of-function mutations in the NLRP3 gene. NLRP3 contains a leucine-rich repeats (LRR) domain with a highly conserved exonic organization that is subjected to extensive alternative splicing. Aberrant NLRP3 inflammasome assembly in CAPS causes chronic inflammation; however, the mechanisms regulating inflammasome function remain unclear.
View Article and Find Full Text PDFThe innate immune system has evolved mechanisms to keep the viral infection under control and repair damaged tissues. Several pathways can identify the presence of pathogenic components, such as viral nucleic acids and viral proteins. Also, the innate immune system can detect cellular and tissue perturbations caused by infections.
View Article and Find Full Text PDFInflammasomes are intracellular multiprotein signaling platforms that initiate inflammatory responses in response to pathogens and cellular damage. Active inflammasomes induce the enzymatic activity of caspase-1, resulting in the induction of inflammatory cell death, pyroptosis, and the maturation and secretion of inflammatory cytokines IL-1β and IL-18. Inflammasomes are activated in many inflammatory diseases, including autoinflammatory disorders and arthritis, and inflammasome-specific therapies are under development for the treatment of inflammatory conditions.
View Article and Find Full Text PDF