Global circular economy drives the development of sustainable alkali activated materials (AAM) for use as construction material from industrial by-products and wastes. The assessment of the potentially hazardous substances release of these new material combinations into the soil and groundwater over time is essential. In this study, the aim is the environmental assessment of three AAMs based on blast furnace slag (BFS), activated with almond shell biomass ash (ABA) as potassium source and three solid sources of silica from the agricultural industry, rice husk ash (RHA), spent diatomaceous earth (SDE) and bamboo leaf ash (BLA), using European horizontal leaching tests proposed for construction materials, for monolithic form, Dynamic Surface Leaching Test (DSLT) and for granular form, Up-flow Percolation Test and the Compliance leaching test, by simulating different scenarios of their entire life cycle.
View Article and Find Full Text PDFUnderstanding the interactions in hybrid systems based on graphene and functional oxides is crucial to the applicability of graphene in real devices. Here, we present a study of the structural defects occurring on graphene during the early stages of the growth of CoO, tailored by the electronic coupling between graphene and the substrate in which it is supported: as received pristine graphene on polycrystalline copper (coupled), cleaned in ultra-high vacuum conditions to remove oxygen contamination, and graphene transferred to SiO/Si substrates (decoupled). The CoO growth was performed at room temperature by thermal evaporation of metallic Co under a molecular oxygen atmosphere, and the early stages of the growth were investigated.
View Article and Find Full Text PDF