Publications by authors named "L Soldo"

The aim of the present work was to evaluate the effect of bendazac lysine on the human lens epithelial cell line HLE-B3 adhesion to polymethylmethacrylate (PMMA) intraocular lenses (IOLs). After adherence to IOLs, cells were incubated in the presence of the drug for 24 h. The number of cells contained in a 6-mm(2) area was then counted with an inverted phase microscope and adherent cells were distinguished from detached floating cells by focusing through the medium.

View Article and Find Full Text PDF

In previous studies performed to elucidate acetaminophen mechanism of action, we demonstrated that acetaminophen inhibits prostaglandin E2 production by interleukin (IL)-1beta-stimulated T98G human astrocytic cells, without affecting cyclooxygenase-2 enzymatic activity. As this result suggests an effect at transcriptional level, we examined whether the drug interferes with the activation of nuclear factor (NF)-kappaB and STAT3 transcription factors and with SAPK signal transducing factor. Western blot analysis of IkappaBalpha protein in the cytoplasm of IL-1beta-stimulated T98G cells and electrophoretic mobility shift assay (EMSA) on corresponding nuclear extracts indicate that acetaminophen (10-1000 microM) dose-dependently inhibits both IkappaBalpha degradation and NF-kappaB nuclear translocation.

View Article and Find Full Text PDF

T98G glioblastoma cells were previously shown to significantly increase interleukin-1beta (IL-1beta) mRNA levels in response to IL-1beta stimulation. This work demonstrates that in such conditions T98G, despite possessing biologically active interleukin converting enzyme, do not release detectable amounts of IL-1beta, even in the presence of 20 mM adenosine triphosphate (ATP). IL-1beta secretion is observed only following concomitant stimulation with 1000 units/ml of IL-1beta and 20 mM ATP.

View Article and Find Full Text PDF

Interleukin (IL) 6, an autocrine growth factor for mesangial cells, and chemokines, which are released from activated mesangial cells and induce leukocyte infiltration, play a critical role in the progression of immune system mediated renal diseases. Since the reciprocal relationship between IL-6 and chemokines in renal inflammation has been barely investigated, we have analyzed whether IL-6 (500 ng/ml), alone or in combination with the soluble form of its receptor (sIL-6R, 200 ng/ml), can induce normal human mesangial cells (NHMC) to release alpha and/or beta chemokines: MCP-1 (monocyte chemoattractant protein 1), IL-8, Rantes (regulated on activation, normal T cell expressed and secreted), and MIP-1alpha (macrophage inflammatory protein 1alpha). Whereas IL-6 or sIL-6R alone were ineffective in inducing significant chemokine release from NHMC, the simultaneous treatment with IL-6 and sIL-6R showed a significant interaction, leading to a strong synergic effect on MCP-1 synthesis and release without exerting any relevant activity on IL-8, Rantes, or MIP-1alpha.

View Article and Find Full Text PDF

Deposition of beta-amyloid in the brain triggers an inflammatory response which accompanies the neuropathologic events of Alzheimer's disease and contributes to the destruction of brain tissue. The present study shows that beta-amyloid can stimulate human astrocytoma cells (T98G) to secrete the proinflammatory factors interleukin-6 and prostaglandins. Furthermore, prostaglandins can stimulate T98G to secrete interleukin-6, which in turn triggers the formation of additional prostaglandins.

View Article and Find Full Text PDF