Publications by authors named "L Sojka"

Nanoparticles are commonly used in diagnostics and therapy. They are also increasingly being implemented in cancer immunotherapy because of their ability to deliver drugs and modulate the immune system. However, the effect of nanoparticles on immune cells involved in the anti-tumor immune response is not well understood.

View Article and Find Full Text PDF

MUC13, a transmembrane mucin glycoprotein, is overexpressed in colorectal cancer (CRC), however, its regulation and functions are not fully understood. It has been shown that MUC13 protects colonic epithelial cells from apoptosis. Therefore, studying MUC13 and MUC13-regulated pathways may reveal promising therapeutic approaches for CRC treatment.

View Article and Find Full Text PDF

We investigated the possible associations between leukocyte telomere length, therapy outcomes, and clinicopathological features in patients with colorectal cancer. Additionally, telomerase reverse transcriptase () expression was evaluated. Telomere length was measured using singleplex qPCR in 478 consecutive leukocyte DNA samples from 198 patients.

View Article and Find Full Text PDF

Dendritic cells (DCs) have received considerable attention as potential targets for the development of novel cancer immunotherapies. However, the clinical efficacy of DC-based vaccines remains suboptimal, largely reflecting local and systemic immunosuppression at baseline. An autologous DC-based vaccine (DCVAC) has recently been shown to improve progression-free survival and overall survival in randomized clinical trials enrolling patients with lung cancer (SLU01, NCT02470468) or ovarian carcinoma (SOV01, NCT02107937), but not metastatic castration-resistant prostate cancer (SP005, NCT02111577), despite a good safety profile across all cohorts.

View Article and Find Full Text PDF

Purpose: The successful implementation of immune checkpoint inhibitors (ICI) in the clinical management of various solid tumors has raised considerable expectations for patients with epithelial ovarian carcinoma (EOC). However, EOC is poorly responsive to ICIs due to immunologic features including limited tumor mutational burden (TMB) and poor lymphocytic infiltration. An autologous dendritic cell (DC)-based vaccine (DCVAC) has recently been shown to be safe and to significantly improve progression-free survival (PFS) in a randomized phase II clinical trial enrolling patients with EOC (SOV01, NCT02107937).

View Article and Find Full Text PDF