The proximity effect between a superconductor and a highly diffusive two-dimensional metal is revealed in a scanning tunneling spectroscopy experiment. The in situ elaborated samples consist of superconducting single crystalline Pb islands interconnected by a nonsuperconducting atomically thin disordered Pb wetting layer. In the vicinity of each superconducting island the wetting layer acquires specific tunneling characteristics which reflect the interplay between the proximity-induced superconductivity and the inherent electron correlations of this ultimate diffusive two-dimensional metal.
View Article and Find Full Text PDFIn a direct scanning tunneling spectroscopy experiment we address the problem of the quantum vortex phases in strongly confined superconductors. The strong confinement regime is achieved in in situ grown ultrathin single nanocrystals of Pb by tuning their lateral size to a few coherence lengths. Upon an external magnetic field, the scanning tunneling spectroscopy revealed novel ultradense arrangements of single Abrikosov vortices characterized by an intervortex distance up to 3 times shorter than the bulk critical one.
View Article and Find Full Text PDF