Background: Hereditary angioedema is a rare genetic disease that leads to severe and unpredictable swelling attacks. NTLA-2002 is an in vivo gene-editing therapy based on clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9. NTLA-2002 targets the gene encoding kallikrein B1 (), with the goal of lifelong control of angioedema attacks after a single dose.
View Article and Find Full Text PDFBackground & Aims: Current therapy for chronic hepatitis B virus (cHBV) infection involves lifelong treatment. New treatments that enable HBV functional cure would represent a clinically meaningful advance. ALN-HBV and VIR-2218 are investigational RNA interference therapeutics that target all major HBV transcripts.
View Article and Find Full Text PDFDownregulation of genes involved in the secondary pathology of Duchenne muscular dystrophy, for example, inflammation, fibrosis, and adiposis, is an interesting approach to ameliorate degeneration of muscle and replacement by fibrotic and adiposis tissue. Small interfering RNAs (siRNAs) are able to downregulate target genes, however, delivery of siRNAs to skeletal muscle still remains a challenge. We investigated delivery of fully chemically modified, cholesterol-conjugated siRNAs targeting , a nontherapeutic target that is expressed highly in muscle.
View Article and Find Full Text PDFBackground: Transthyretin amyloidosis, also called ATTR amyloidosis, is a life-threatening disease characterized by progressive accumulation of misfolded transthyretin (TTR) protein in tissues, predominantly the nerves and heart. NTLA-2001 is an in vivo gene-editing therapeutic agent that is designed to treat ATTR amyloidosis by reducing the concentration of TTR in serum. It is based on the clustered regularly interspaced short palindromic repeats and associated Cas9 endonuclease (CRISPR-Cas9) system and comprises a lipid nanoparticle encapsulating messenger RNA for Cas9 protein and a single guide RNA targeting .
View Article and Find Full Text PDF