Publications by authors named "L Segel"

A molecular-level theory is constructed for the control of fast neurotransmitter release, based on recent experimental findings that depolarization shifts presynaptic autoreceptors to a low affinity state and that an autoreceptor must be bound to a transmitter before it can become associated with the exocytotic apparatus. It is assumed that such an association blocks release; experimental support for this assumption is cited. The theory provides mechanisms for key experimental results concerning the essence of the matter, what controls the time course of evoked release? The same general model can account for both evoked and spontaneous release.

View Article and Find Full Text PDF

White blood cell neutrophil is a key component in the fast initial immune response against bacterial and fungal infections. Granulocyte colony stimulating factor (G-CSF) which is naturally produced in the body, is known to control the neutrophils production in the bone marrow and the neutrophils delivery into the blood. In oncological practice, G-CSF injections are widely used to treat neutropenia (dangerously low levels of neutrophils in the blood) and to prevent the infectious complications that often follow chemotherapy.

View Article and Find Full Text PDF

The primacy of Ca2+ in controlling the amount of released neurotransmitter is well established. However, it is not yet clear what controls the time-course (initiation and termination) of release. Various experiments indicated that the time-course is controlled by membrane potential per se.

View Article and Find Full Text PDF

Cellular metabolites frequently have more than a single function in the cell. For example they may be sources of energy as well as building blocks for several macromolecules. The relative cellular needs for these different functions depend on environmental and intracellular factors.

View Article and Find Full Text PDF

In this paper, we use both mathematical modeling and simulation to explore homeostasis of peripheral immune system effector cells, particularly alveolar macrophages. Our interest is in the distributed control mechanisms that allow such a population to maintain itself. We introduce a multi-purpose simulator designed to study individual cell responses to local molecular signals and their effects on population dynamics.

View Article and Find Full Text PDF