Generating comprehensive image maps, while preserving spatial three-dimensional (3D) context, is essential in order to locate and assess quantitatively specific cellular features and cell-cell interactions during organ development. Despite recent advances in 3D imaging approaches, our current knowledge of the spatial organization of distinct cell types in the embryonic pancreatic tissue is still largely based on two-dimensional histological sections. Here, we present a light-sheet fluorescence microscopy approach to image the pancreas in three dimensions and map tissue interactions at key time points in the mouse embryo.
View Article and Find Full Text PDFDuring lung development, epithelial branches expand preferentially in a longitudinal direction. This bias in outgrowth has been linked to a bias in cell shape and in the cell division plane. How this bias arises is unknown.
View Article and Find Full Text PDFDecellularized porcine kidneys were recellularized with renal epithelial cells by three methods: perfusion through the vasculature under high pressure, perfusion through the ureter under high pressure, or perfusion through the ureter under moderate vacuum. Histology, scanning electron microscopy, confocal microscopy, and magnetic resonance imaging were used to assess vasculature preservation and the distribution of cells throughout the kidneys. Cells were detected in the magnetic resonance imaging by labeling them with iron oxide.
View Article and Find Full Text PDFThe combination of patient-specific cells with scaffolds obtained from natural sources may result in improved regeneration of human tissues. Decellularization of the native tissue is the first step in this technology. Effective decellularization uses agents that lyse cells and remove all cellular materials, leaving intact collagenous extracellular matrices (ECMs).
View Article and Find Full Text PDFChronic kidney diseases affect thousands of people worldwide. Although hemodialysis alleviates the situation by filtering the patient's blood, it does not replace other kidney functions such as hormone release or homeostasis regulation. Consequently, orthotopic transplantation of donor organs is the ultimate treatment for patients suffering from end-stage renal failure.
View Article and Find Full Text PDF