Plasmonic gold nanoparticles have been used increasingly in solid-state systems because of their applicability in fabricating novel sensors, heterogeneous catalysts, metamaterials, and thermoplasmonic substrates. While bottom-up colloidal syntheses take advantage of the chemical environment to control size, shape, composition, surface chemistry, and crystallography of the nanostructures precisely, it can be challenging to assemble nanoparticles rationally from suspension onto solid supports or within devices. In this Review, we discuss a powerful recent synthetic methodology, bottom-up substrate growth, which circumvents time-consuming batch presynthesis, ligand exchange, and self-assembly steps by applying wet-chemical synthesis to form morphologically controlled nanostructures on supporting materials.
View Article and Find Full Text PDFWe developed an unconventional seed-mediated synthetic method, whereby gold nanostars are formed directly on the internal walls of microfluidic reactors. The dense plasmonic substrate coatings were grown in microfluidic channels with different geometries to elucidate the impacts of flow rate and profile on reagent consumption, product morphology, and density. Nanostar growth was found to occur in the flow-limited regime and our results highlight the possibility of creating shape gradients or incorporating multiple morphologies in the same microreactor, which is challenging to achieve with traditional self-assembly.
View Article and Find Full Text PDFThe pseudo-two-dimensional (2D) morphology of plate-like metal nanoparticles makes them one of the most anisotropic, mechanistically understood, and tunable structures available. Although well-known for their superior plasmonic properties, recent progress in the 2D growth of various other materials has led to an increasingly diverse family of plate-like metal nanoparticles, giving rise to numerous appealing properties and applications. In this review, we summarize recent progress on the solution-phase growth of colloidal plate-like metal nanoparticles, including plasmonic and other metals, with an emphasis on mechanistic insights for different synthetic strategies, the crystallographic habits of different metals, and the use of nanoplates as scaffolds for the synthesis of other derivative structures.
View Article and Find Full Text PDFThe rational design of functional plasmonic metasurfaces and metamaterials requires the development of high-throughput characterization techniques compatible with operando conditions and capable of addressing single-nanostructures. In their work, Wei et al. demonstrate the use of electrochemiluminescence microscopy to investigate the mechanism behind plasmon-enhanced luminescence induced by gold nanostructures.
View Article and Find Full Text PDFPrecise arrangements of plasmonic nanoparticles on substrates are important for designing optoelectronics, sensors and metamaterials with rational electronic, optical and magnetic properties. Bottom-up synthesis offers unmatched control over morphology and optical response of individual plasmonic building blocks. Usually, the incorporation of nanoparticles made by bottom-up wet chemistry starts from batch synthesis of colloids, which requires time-consuming and hard-to-scale steps like ligand exchange and self-assembly.
View Article and Find Full Text PDF