Publications by authors named "L Saruwatari"

Titanium surfaces with micro-nano hybrid topography (nanoscale nodules in microscale pits) have been recently demonstrated to show higher biological capability than those with microtopography alone. On the other hand, UV treatment of titanium surfaces, which is called UV photofunctionalization, has recently been introduced to substantially increase the biological capability and osteoconductivity of titanium surfaces. However, synergistic effects of these two advanced surface modification technologies and regulatory factors to potentially modulate the mutual effects have never been addressed.

View Article and Find Full Text PDF

Reported bone-implant contact percentages are far below the ideal 100%. We tested a hypothesis that the protein adsorption capability of titanium, which is critical to the process of osseointegration, changes over time before its use. Machined, acid-etched, and sandblasted surfaces were prepared and stored under dark ambient conditions for 3 days, 1 week, or 4 weeks.

View Article and Find Full Text PDF

Biological tissues involve hierarchical organizations of structures and components. We created a micropit-and-nanonodule hybrid topography of TiO(2) by applying a recently reported nanonodular self-assembly technique on acid-etch-created micropit titanium surfaces. The size of the nanonodules was controllable by changing the assembly time.

View Article and Find Full Text PDF

Nanostructuring technology has been proven to create unique biological properties in various biomaterials. Here we present a discovered phenomenon of titanium nano-nodular self-assembly that occurs during physical vapor depositions of titanium (Ti) onto specifically conditioned micro-textured titanium surfaces, and test a hypothesis that the Ti nanostructure has the potential to enhance bone-titanium integration. The nanostructure creation effectively provided geometrical undercut and increased the surface area by up to 40% compared with the acid-etched surface with microtopography.

View Article and Find Full Text PDF

Biomechanical properties of the bone-titanium interface have rarely been studied, due to the technical limitations involved; whether biological bonding mechanisms exist has not been determined. We hypothesized that a selected set of proteoglycan/glycosaminoglycan complexes plays a role in establishing the adhesion between bone and titanium, and utilized the rat bone-marrow-derived osteoblastic culture model to gain an insight into the hypothesis. Gene expression of selected proteoglycan core proteins was up-regulated in the osteoblasts cultured on titanium compared with those on polystyrene.

View Article and Find Full Text PDF