Publications by authors named "L Sanjuan-Navarro"

In the present work, a procedure based on a dispersive medium for carbon black (CB) isolation from soil samples for analysis was proposed for the first time. Polymeric and biological dispersants and a sequential use of both dispersants were assayed. Asymmetrical flow field flow fractionation with dynamic light scattering detector (AF4-DLS) and sedimentation field flow fractionation with multi-angle light scattering detector (SdF3-MALS) were used for CB quantitation and characterization in the achieved dispersions.

View Article and Find Full Text PDF

Carbon black nanomaterial (CB-NM), as an industrial product with a large number of applications, poses a high risk of exposure, and its impact on health needs to be assessed. The most common testing platform for engineered (E)NMs is in vitro toxicity assessment, which requires prior ENM dispersion, stabilization, and characterization in cell culture media. Here, asymmetric flow field-flow fractionation (AF4) coupled to UV-Vis and dynamic light scattering (DLS) detectors in series was used for the study of CB dispersions in cell culture media, optimizing instrumental variables and working conditions.

View Article and Find Full Text PDF

Characterization of carbon black (CB) nanomaterials is required in industrial and research areas. Hence, in this study, asymmetrical flow field flow fractionation coupled to UV-vis and DLS detectors in series (AF4-UV-vis-DLS) was studied to evaluate the CB dispersion behavior in polymeric and biological dispersants, given the relevance of these media in practical applications. Under the experimental conditions, the results indicated that polymeric and biological dispersions showed size distributions with hydrodynamic diameters of 404 and 175 nm, respectively, for a particle core diameter of 40 nm.

View Article and Find Full Text PDF

This paper shows a particular example to move to a sustainable circular economical process from valorization of rice straw ashes by developing a green synthesis for obtaining a useful sub-product. This strategy can palliate negative effects of the agriculture waste practices on the environment and also the obtained silica reduced nitrate content in waters. It is demonstrated that the silica synthesis developed at lab was scalable more than a hundred times with good results.

View Article and Find Full Text PDF

Colorimetric localized surface plasmon resonance (LSPR) as analytical response is applied for a wide number of chemical sensors and biosensors. However, the dependence of different factors, such as size distribution of nanoparticles (NPs), shape, dielectric environment, inter-particle distance and matrix, among others, can provide non-reliable results by UV-vis spectrometry in complex matrices if NP assessment is not carried out, particularly at low levels of analyte concentrations. Miniaturized liquid chromatography, capillary (CapLC) and nano (NanoLC), coupled on line with in-tube solid phase microextraction (IT-SPME) is proposed for the first time for both, controlling suitability of used noble metal NP dispersions and developing plasmonic assays.

View Article and Find Full Text PDF