Publications by authors named "L Salvioni"

Background: The interaction between cancer cells and cancer-associated fibroblasts (CAFs) is a key determinant of the rapid progression, high invasiveness, and chemoresistance of aggressive desmoplastic cancers such as pancreatic ductal adenocarcinoma (PDAC). Tumor cells are known to reprogram fibroblasts into CAFs by secreting transforming growth factor beta (TGF-β), amongst other cytokines. In turn, CAFs produce soluble factors that promote tumor-cell invasiveness and chemoresistance, including TGF-β itself, which has a major role in myofibroblastic CAFs.

View Article and Find Full Text PDF

Nanomedicine provides various opportunities for addressing medical challenges associated with drug bioavailability, stability, and efficacy. In particular, oral nanoparticles (NPs) represent an alternative strategy to enhance the solubility and stability of active ingredients through the gastrointestinal tract. The nanocarriers could be used for both local and systemic targeting, enabling controlled release of encapsulated drugs.

View Article and Find Full Text PDF

The use of co-processed materials for Orally Disintegrating Tablets (ODT) preparation by direct compression is well consolidated. However, the evaluation of their potential for ODT preparation by 3D printing technology remains almost unexplored. The present study aimed to estimate the use of commercially available co-processed excipients, conventionally applied in compression protocols, for the preparation of ODTs with binder jetting-3D printing technology.

View Article and Find Full Text PDF

Hetero-nanoparticles self-assembled from a conjugate bearing folic acid as the targeting agent, and another bearing paclitaxel as the active agent are reported. Hetero-nanoparticles containing varying percentages of folic acid conjugates are characterised, and their biological activity is determined.

View Article and Find Full Text PDF

This work originated from the need to functionalize surfactant-coated inorganic nanoparticles for biomedical applications, a process that is limited by excess unbound surfactant. These limitations are connected to the bioconjugation of targeting molecules that are often in equilibrium between the free aliquot in solution and that which binds the surface of the nanoparticles. The excess in solution can play a role in the biocompatability and of the final nanoparticles stock.

View Article and Find Full Text PDF