Background: Soil nutrient status and soil-borne diseases are pivotal factors impacting modern intensive agricultural production. The interplay among plants, soil microbiome, and nutrient regimes in agroecosystems is essential for developing effective disease management. However, the influence of nutrient availability on soil-borne disease suppression and associated plant-microbe interactions remains to be fully explored.
View Article and Find Full Text PDFPlants have coevolved together with the microbes that surround them and this assemblage of host and microbes functions as a discrete ecological unit called a holobiont. This review outlines plant-driven assembly of disease-suppressive microbiomes. Plants are colonized by microbes from seed, soil, and air but selectively shape the microbiome with root exudates, creating microenvironment hot spots where microbes thrive.
View Article and Find Full Text PDFOne model of a disease-suppressive soil predicts that the confrontation of plant with a phytopathogen can lead to the recruitment and accumulation of beneficial microorganisms. However, more information needs to be deciphered regarding which beneficial microbes become enriched, and how the disease suppression is achieved. Here, we conditioned soil by continuously growing eight generations of cucumber inoculated with Fusarium oxysporum f.
View Article and Find Full Text PDFNematodes feed mainly on bacteria and sense volatile signals through their chemosensory system to distinguish food from pathogens. Although nematodes recognizing bacteria by volatile metabolites are ubiquitous, little is known of the associated molecular mechanism. Here, we show that the antinematode bacterium Paenibacillus polymyxa KM2501-1 exhibits an attractive effect on Caenorhabditis elegans via volatile metabolites, of which furfural acetone (FAc) acts as a broad-spectrum nematode attractant.
View Article and Find Full Text PDF