Schizophrenia is a chronic neuropsychiatric disorder that causes distinct structural alterations within the brain. We hypothesize that deep learning applied to a structural neuroimaging dataset could detect disease-related alteration and improve classification and diagnostic accuracy. We tested this hypothesis using a single, widely available, and conventional T1-weighted MRI scan, from which we extracted the 3D whole-brain structure using standard post-processing methods.
View Article and Find Full Text PDFBackground: Patients with schizophrenia show reduced NMDA glutamate receptor-dependent auditory plasticity, which is rate limiting for auditory cognitive remediation (AudRem). We evaluate the utility of behavioral and neurophysiological pharmacodynamic target engagement biomarkers, using a d-serine+AudRem combination.
Methods: Forty-five participants with schizophrenia or schizoaffective disorder were randomized to 3 once-weekly AudRem visits + double-blind d-serine (80, 100, or 120 mg/kg) or placebo in 3 dose cohorts of 12 d-serine and 3 placebo-treated participants each.
Glutamatergic dysfunction is implicated in schizophrenia pathoaetiology, but this may vary in extent between patients. It is unclear whether inter-individual variability in glutamate is greater in schizophrenia than the general population. We conducted meta-analyses to assess (1) variability of glutamate measures in patients relative to controls (log coefficient of variation ratio: CVR); (2) standardised mean differences (SMD) using Hedges g; (3) modal distribution of individual-level glutamate data (Hartigan's unimodality dip test).
View Article and Find Full Text PDFMultidimensional progressive declines in the absence of standard biomarkers for neurodegeneration are observed commonly in the development of schizophrenia, and are accepted as consistent with neurodevelopmental etiological hypotheses to explain the origins of the disorder. Far less accepted is the possibility that neurodegenerative processes are involved as well, or even that key dimensions of function, such as cognition and aspects of biological integrity, such as white matter function, decline in chronic schizophrenia beyond levels associated with normal aging. We propose that recent research germane to these issues warrants a current look at the question of neurodegeneration.
View Article and Find Full Text PDF