Publications by authors named "L S Eikje"

Background: Since the very beginning of genomic selection, researchers investigated methods that improved upon SNP-BLUP (single nucleotide polymorphism best linear unbiased prediction). SNP-BLUP gives equal weight to all SNPs, whereas it is expected that many SNPs are not near causal variants and thus do not have substantial effects. A recent approach to remedy this is to use genome-wide association study (GWAS) findings and increase the weights of GWAS-top-SNPs in genomic predictions.

View Article and Find Full Text PDF

Bias and inflation in genomic evaluation with the single-step methods have been reported in several studies. Incompatibility between the base-populations of the pedigree-based and the genomic relationship matrix (G) could be a reason for these biases. Inappropriate ways of accounting for missing parents could be another reason for biases in genetic evaluations with or without genomic information.

View Article and Find Full Text PDF

Background: The main aim of single-step genomic predictions was to facilitate optimal selection in populations consisting of both genotyped and non-genotyped individuals. However, in spite of intensive research, biases still occur, which make it difficult to perform optimal selection across groups of animals. The objective of this study was to investigate whether incomplete genotype datasets with errors could be a potential source of level-bias between genotyped and non-genotyped animals and between animals genotyped on different single nucleotide polymorphism (SNP) panels in single-step genomic predictions.

View Article and Find Full Text PDF

Breeding programs for sheep in Norway are based on cooperatives of ram circles (RC). The key features of RC are selection of rams across member flocks and their rotation among RC flocks during the mating season. Genetic gains are disseminated to flocks outside RC (ORC).

View Article and Find Full Text PDF

A method of approximating estimated breeding values (EBV) from a multivariate distribution of true breeding values (TBV) and EBV is proposed for use in large-scale stochastic simulation of alternative breeding schemes with a complex breeding goal. The covariance matrix of the multivariate distributions includes the additive genetic (co)variances and approximated prediction error (co)variances at different selection stages in the life of the animal. The prediction error (co)variance matrix is set up for one animal at a time, utilizing information on the selection candidate and its offspring, the parents, as well as paternal and maternal half- sibs.

View Article and Find Full Text PDF