Flash Joule heating has been used as a versatile solid-state synthesis method in the production of a wide range of products, including organic, inorganic, and ceramic products. Conventional flash Joule heating systems are large and customized, presenting significant barriers in the cost of assembly, the expertise needed to operate, and uniformity of results between different systems. Even laboratory-scale flash Joule heating systems struggle to operate above 10 g capacity, and they suffer from poor temperature controllability.
View Article and Find Full Text PDFLithium iron phosphate (LiFePO, LFP) batteries are widely used in electric vehicles and energy storage systems due to their excellent cycling stability, affordability and safety. However, the rate performance of LFP remains limited due to its low intrinsic electronic and ionic conductivities. In this work, an ex situ flash carbon coating method is developed to enhance the interfacial properties for fast charging.
View Article and Find Full Text PDFSustainable manufacturing that prioritizes energy efficiency, minimal water use, scalability and the ability to generate diverse materials is essential to advance inorganic materials production while maintaining environmental consciousness. However, current manufacturing practices are not yet equipped to fully meet these requirements. Here we describe a flash-within-flash Joule heating (FWF) technique-a non-equilibrium, ultrafast heat conduction method-to prepare ten transition metal dichalcogenides, three group XIV dichalcogenides and nine non-transition metal dichalcogenide materials, each in under 5 s while in ambient conditions.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are persistent and bioaccumulative pollutants that can easily accumulate in soil, posing a threat to environment and human health. Current PFAS degradation processes often suffer from low efficiency, high energy and water consumption, or lack of generality. Here, we develop a rapid electrothermal mineralization (REM) process to remediate PFAS-contaminated soil.
View Article and Find Full Text PDF