We report on speeding-up equilibrium recovery in the previously unexplored general case of the underdamped regime using an optically levitated particle. We accelerate the convergence toward equilibrium by an order of magnitude compared to the natural relaxation time. We then discuss the efficiency of the studied protocols, especially for a multidimensional system.
View Article and Find Full Text PDFNanographene materials are promising building blocks for the growing field of low-dimensional materials for optics, electronics and biophotonics applications. In particular, bottom-up synthesized 0D graphene quantum dots show great potential as single quantum emitters. To fully exploit their exciting properties, the graphene quantum dots must be of high purity; the key parameter for efficient purification being the solubility of the starting materials.
View Article and Find Full Text PDFAtomically precise graphene quantum dots synthesized by bottom-up chemistry are promising versatile single emitters with potential applications for quantum photonic technologies. Toward a better understanding and control of graphene quantum dot (GQD) optical properties, we report on single-molecule spectroscopy at cryogenic temperature. We investigate the effect of temperature on the GQDs' spectral linewidth and vibronic replica, which we interpret building on density functional theory calculations.
View Article and Find Full Text PDFGraphene quantum dots, atomically precise nanopieces of graphene, are promising nano-objects with potential applications in various domains such as photovoltaics, quantum light emitters and bio-imaging. Despite their interesting prospects, precise reports on their photophysical properties remain scarce. Here, we report on a study of the photophysics of CH(CH) graphene quantum dots.
View Article and Find Full Text PDFSensitization of graphene with inorganic semiconducting nanostructures has been demonstrated as a powerful strategy to boost its optoelectronic performance. However, the limited tunability of optical properties and toxicity of metal cations in the inorganic sensitizers prohibits their widespread applications, and the in-depth understanding of the essential interfacial charge-transfer process within such hybrid systems remains elusive. Here, we design and develop high-quality nanographene (NG) dispersions with a large-scale production using high-shear mixing exfoliation.
View Article and Find Full Text PDF