Reconfigurability within hydrogels has emerged as an attractive functionality that can be used in information encryption, cargo/delivery, environmental remediation, soft robotics, and medicine. Here micro-patterned polymer hydrogels capable of temperature-dependent reconfigurability are fabricated. For this, the hydrogels are provided with micron-sized Pickering emulsion droplets stabilized by magnetic particles, which are capable of harnessing energy from external force fields.
View Article and Find Full Text PDFA bottom-up approach to fabricating monodisperse, two-component polymersomes that possess phase-separated ("patchy") chemical topology is presented. This approach is compared with already-existing top-down preparation methods for patchy polymer vesicles, such as film rehydration. These findings demonstrate a bottom-up, solvent-switch self-assembly approach that produces a high yield of nanoparticles of the target size, morphology, and surface topology for drug delivery applications, in this case patchy polymersomes of a diameter of ≈50 nm.
View Article and Find Full Text PDFFibrin hydrogels made by self-assembly of fibrinogen obtained from human plasma have shown excellent biocompatible and biodegradable properties and are widely used in regenerative medicine. The fibrinogen self-assembly process can be triggered under physiological conditions by the action of thrombin, allowing the injection of pregel mixtures that have been used as cell carriers, wound-healing systems, and bio-adhesives. However, access to fibrinogen from human plasma is expensive and fibrin gels have limited mechanical properties, which make them unsuitable for certain applications.
View Article and Find Full Text PDFPolypeptide-based nanoparticles offer unique advantages from a nanomedicine perspective such as biocompatibility, biodegradability, and stimuli-responsive properties to (patho)physiological conditions. Conventionally, self-assembled polypeptide nanostructures are prepared by first synthesizing their constituent amphiphilic polypeptides followed by postpolymerization self-assembly. Herein, we describe the one-pot synthesis of oxidation-sensitive supramolecular micelles and vesicles.
View Article and Find Full Text PDFFrom viruses to nanoparticles, constructs functionalized with multiple ligands display peculiar binding properties that only arise from multivalent effects. Using statistical mechanical modelling, we describe here how multivalency can be exploited to achieve what we dub range selectivity, that is, binding only to targets bearing a number of receptors within a specified range. We use our model to characterise the region in parameter space where one can expect range selective targeting to occur, and provide experimental support for this phenomenon.
View Article and Find Full Text PDF