Importance: Medicare Part B drug expenditures have increased in recent years. This trend is likely to persist given the increased use and availability of biologics.
Objectives: To assess the extent to which Medicare Part B spending growth was associated with changes in price vs quantity, and how these trends interacted with entry of new drugs into the marketplace.
Purpose: FAP is a membrane-bound protease under investigation as a pan-cancer target, given its high levels in tumors but limited expression in normal tissues. FAP-2286 is a radiopharmaceutical in clinical development for solid tumors that consists of two functional elements: a FAP-targeting peptide and a chelator used to attach radioisotopes. Preclinically, we evaluated the immune modulation and anti-tumor efficacy of FAP-2287, a murine surrogate for FAP-2286, conjugated to the radionuclide lutetium-177 (Lu) as a monotherapy and in combination with a PD-1 targeting antibody.
View Article and Find Full Text PDFLucitanib is a multi-tyrosine kinase inhibitor whose targets are associated with angiogenesis and other key cancer and immune pathways. Its antiangiogenic properties are understood, but lucitanib's immunomodulatory activity is heretofore unknown. Lucitanib exhibited such activity in vivo, increasing CD3 + , CD8 + , and CD4 + T cells and decreasing dendritic cells and monocyte-derived suppressor cells in mouse spleens.
View Article and Find Full Text PDFAlthough targeted therapies often elicit profound initial patient responses, these effects are transient due to residual disease leading to acquired resistance. How tumors transition between drug responsiveness, tolerance and resistance, especially in the absence of preexisting subclones, remains unclear. In epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells, we demonstrate that residual disease and acquired resistance in response to EGFR inhibitors requires Aurora kinase A (AURKA) activity.
View Article and Find Full Text PDFChemotherapy is used to treat most cancer patients, yet our understanding of factors that dictate response and resistance to such drugs remains limited. We report the generation of a quantitative chemical-genetic interaction map in human mammary epithelial cells charting the impact of the knockdown of 625 genes related to cancer and DNA repair on sensitivity to 29 drugs, covering all classes of chemotherapy. This quantitative map is predictive of interactions maintained in other cell lines, identifies DNA-repair factors, predicts cancer cell line responses to therapy, and prioritizes synergistic drug combinations.
View Article and Find Full Text PDF